Pedestrian LOS

TABLE 4.2.1 Level of Service for Pedestrian Flow (HCM 2000)

Walkways and sidewalks	Transportation terminals	Queuing areas	Level of service	Signalized intersections	Noncompliance
Spa	ace (ft²/person)		(LOS)	Delay (s/pedestrian)	(likelihood)
> 62	>26	>13	A	<10	Low
> 41–62	> 14–26	> 10–13	В	≥ I0–20	
> 24-41	> 11–14	> 7–10.	C	> 20–30	Moderate
> 16–24	> 9–11	> 3-T	D	> 30–40	
> 8–16	> 8–9	> 2~3	E	> 40–60	High
<8	≤8;	≤2	F	>60	Very High

An airport corridor is 30 ft wide. Given a peak demand of 300 pedestrians per minute and an average walking speed of 3 ft/s, estimate the LOS at the corridor.

• Use consistent units and find the number of pedestrians in 1 ft² then find footage allocation per person.

$$D = \frac{V_p}{S}$$

$$V_p = \frac{V}{width}$$

Where: V_p : pedestrian per 1 feet width, and V: pedestrian per whole width

$$V_p = \frac{300}{30} = 10 \ pedestrian/min/ft$$

$$D = \frac{10}{3/60} = 0.0556 \ pedestrian/ft^2$$

$$S = \frac{1}{D} = 18 \ ft^2/pedestrian$$

From table LOS is B.