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1 A Unified View on Subclasses of Bernstein Functions

In the sequel all measures will be understood on the space (0,∞) and their densities,
if they have one, are with respect to Lebesgue measure on (0,∞) which will be
denoted by dx. We recall that the Mellin convolution (or multiplicative convolution)
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of two measures ν and τ on (0,∞) is defined by:

ν � τ(A) =
∫

(0,∞)2
1lA(xy)ν(dx)τ(dy), if A is a Borel set of (0,∞) .

If ν is absolutely continuous with density function h, then ν�τ is the function given
by

ν � τ(x) = h � τ(x) =
∫

(0,∞)

h

(
x

y

)
τ(dy)

y
, x > 0.

Another nice property of the Mellin convolution is that if a is a real number, then

xa (ν � τ) = (xaν) � (xaτ ) (1.1)

Notice that all the integrals above may be infinite if ν and/or τ are not finite
measures. A function f defined on (0,∞) is called completely monotone, and we
denote f ∈ CM, if it is infinitely differentiable there satisfies

(−1)nf (n)(x) ≥ 0, for all n = 0, 1, 2, · · · , x > 0. (1.2)

Bernstein’s theorem says that f ∈ CM if, and only if, it is the Laplace transform of
some measure τ on [0,∞):

f (λ) =
∫

[0,∞)

e−λx τ (dx), λ > 0.

Denote τ̌ the image of τ | (0,∞) by the function x �→ 1/x and notice that f has the
representation

f (λ) = τ({0}) +
∫

(0,∞)

e− λ
x τ̌ (dx) = e−x � (xτ̌ )(λ). (1.3)

A function φ is called a Bernstein function, and we denote φ ∈ BF , if it has the
representation

φ(λ) = q + dλ +
∫

(0,∞)

(1 − e−λx)π(dx), λ ≥ 0 , (1.4)

where q, d ≥ 0, the measure π , supported by (0,∞), satisfies

∫
(0,∞)

(x ∧ 1) π(dx) < ∞.
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The usage is to call q the killing term and d the drift term. Any measure on (0,∞)

that satisfies the preceding integrability condition is called a Lévy measure. As for
completely monotone functions, notice that φ is represented by

φ(λ) = q + dλ + (1 − e−x) � (xπ̌)(λ).

Bernstein functions are more likely called by probabilists Laplace exponents of
infinite divisible sub-probability distributions or Laplace exponents of (possibly
killed) subordinators, and the previous representation is their Lévy-Khintchine
representation. See [6] for more account on subordinators and Lévy processes.

Next theorem illustrates to what extent the Mellin convolution is involved into
the most popular subclasses of infinitely divisible distributions. Roughly speaking,
we will see that each of these subclass C is associated to a Lévy measures π of the
form π = c� ν, where c is a specified function and ν is some Lévy measure.

Theorem 1.1 Let π be a Lévy measure.

(1) The measure π has a non increasing density if, and only if, π is of the form

π = 1l(0,1](x)dx � ν,

where ν is some a Lévy measure;
(2) The measure xπ(dx) has a non increasing density if, and only if, π is of the

form

π = 1l(0,1](x)
dx

x
� ν,

where ν is a measure which integrates the function g0(x) = x 1l(0,1](x) +
log x 1l[1,∞)(x) (in particular ν is a Lévy measure);

(3) The measure π has a density of the form xa−1 k(x) with a ∈ (−1,∞) and k a
completely monotonic function such that lim

x→+∞ k(x) = 0 if, and only if, π has

the expression

π = xa−1 e−xdx � ν,

where ν is a measure which integrates the function ga given by

ga(x) :=
⎧⎨
⎩

x 1l(0,1](x) + x−a 1l[1,∞)(x) if a ∈ (−1, 0),
x 1l(0,1](x) + log x1l[1,∞)(x) if a = 0,
x 1l(0,1](x) + 1l[1,∞)(x) if a ∈ (0,∞) .

(1.5)

Consequently, ν is a Lévy measure in all cases. Moreover ν may be an arbitrary
Lévy measure in case (1) and in case (3) with a > 0.
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Proof Notice that if μ has a density h, then μ � ν has a density, denoted by h � ν,
and taking values in [0,∞]:

h � ν(x) =
∫

(0,∞)

1

y
h

(
x

y

)
ν(dy), x > 0.

(1) Using the last expression for h(x) = u0(x) = 1l (0,1](x), we have

u0 � ν(x) =
∫ ∞

x

ν(dy)

y
.

Notice that any non-increasing function (taking values in [0,∞]) is of the form
u0 � ν and conversely. Since

∫ ∞

0
(x∧1) (u0�ν)(x) dx =

∫ 1

0

x2

2

ν(dx)

x
+1

2

∫ ∞

1

ν(dy)

y
+

∫ ∞

1

z − 1

z
ν(dz) ,

we deduce that the measure with density
∫ ∞
x

ν(dy)/y is a Lévy measure if, and
only if, ν integrates the function x ∧ 1 or, in other words, ν is a Lévy measure.

(2) Using the expression of h � ν with h(x) = u1(x) = 1l (0,1](x)/x, we have:

u1 � ν(x) = ν(x,∞)

x
, x > 0.

Notice that any function π , valued in [0,∞], such that xπ(x) is non increasing
is of the form u1 � ν and conversely. After that, note that

∫ ∞

0
(x ∧ 1)u1 � ν(x)dx =

∫ 1

0
x ν(dx) + ν(1,∞)

∫ ∞

1
log x ν(dx) .

Thus, the measure with density u1 � ν(x) is a Lévy measure if, and only if,
ν(dx) integrates g0(x) = x1l(0,1](x) + log x 1l(1,∞)(x).

(3) Without surprise, one is tempted to use the fact (1.1) together with representa-
tion (1.3) and write that for some measure τ

xa−1k(x) = xa−1(e−x � (xτ̌ )) = (xa−1e−x) � (xaτ̌ ),

where the transform τ̌ of τ is given right before (1.3). We will do this in
detail and provide the integrability conditions for the involved measures: let
a ∈ (−1,∞), k be a completely monotone function such that k(∞) = 0 and
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π(dx) = xa−1 k(x) 1l (0,∞)dx. By Bernstein theorem, k is the Laplace transform
of a measure on (0,∞), and may be written in the form

k(x) :=
∫

(0,∞)

e−xu uaσ (du), x > 0 . (1.6)

Defining

ha(u) :=
∫ ∞

0
(x ∧ u) xa−1 e−xdx, u > 0,

and using Fubini’s theorem, write

∫
(0,∞)

(x ∧ 1)π(dx) =
∫

(0,∞)

(x ∧ 1)xa−1 k(x)dx =
∫

(0,∞)

ha(u)
σ (du)

u
.

We will now find the necessary and sufficient conditions on σ insuring that the
last integral is finite. First, notice that ha(u) ↗ Γ (a + 1) when u → ∞ and
then ha is bounded for any a > −1. Then, elementary computations give the
following behavior of ha in a neighborhood of 0,

lim
0+

ha(u)

u
= Γ (a), if a > 0 ;

0 < lim inf
0+

ha(u) − u

u| log u| ≤ lim sup
0+

ha(u) − u

u| log u| < ∞, if a = 0 ;

lim
0+

ha(u)

u1−|a| = 1

|a| + 1

1 − |a| , if −1 < a < 0.

and then π is a Lévy measure iff
∫ ∞
1

σ(du)
u

du < ∞ and

σ([0, 1]) < ∞, if a > 0;∫
(0,1]

| log u| σ(du) < ∞, if a = 0;
∫

(0,1]
σ(du)

u|a| < ∞, if −1 < a < 0.

Notice that in each case σ([0, 1]) < ∞ and then σ(du)/u is a Lévy measure.
Also notice that the measure ν, defined as the image of σ(du) induced by the
function u �→ 1/u, is also a Lévy measure, so that the integrability properties
of the measure σ are equivalent to ν integrates the function ga in (1.5). In order
to conclude, write

xa−1 k(x) = xa−1
∫

(0,∞)

e−xu ua σ (du) =
∫

(0,∞)

(
x

y

)a−1

e
− x

y
ν(dy)

y
= (ya−1e−y�ν ) (x) .
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(4) After the above developments, the last assertion becomes obvious.

�

Remark 1.2 Below are some classes of Bernstein functions which can be defined
via the correspondence between π and μ obtained in Theorem 1.1:

(i) The class JB of Bernstein function whose Lévy measure is of type (1) is often
called the class the Jurek class of Bernstein functions. It is also characterized
by those function

φ ≥ 0 s.t. λ �→ (x �→ xφ(x))′(λ) ∈ BF .

(ii) Bernstein functions whose Lévy measure is of type (2) is called self-
decomposable Bernstein functions, and we denote SDBF their set. It is
easy to check (see [9, Theorem 2.6 ch. VI], for instance), that

φ ∈ SDBF ⇐⇒ φ(0) ≥ 0 and λ �→ λφ′(λ) ∈ BF .

The class SDBF functions corresponds to self-decomposable distributions:
namely, a r.v. X has a self-decomposable distribution if there exists a family
of positive r.v. (Yc)0<c<1, each Yc is independent from X such that the identity

in distribution holds: X
d= cX + Yc.

(iii) In [7, pp. 49], the class CBF of complete Bernstein functions corresponds
to the Bernstein functions appearing in point (3) of Theorem 1.1 when the
parameter a equals 1. In matrix analysis and operator theory, the name
“operator monotone function” is more common for CBF-functions. Another
feature is that CBF is included into the class of SBF of special Bernstein
functions, i.e. the class of Bernstein functions φ such that λ �→ λ/φ(λ) ∈ BF .
The class CBF will be deeply investigated in next section.

(iv) The class T BF [7, pp. 73] of Thorin Bernstein functions corresponds to a =
0. The class T BF corresponds to the Laplace exponents of the generalized
Gamma distributions, shortly GGC, introduced by Bondesson [1, 2] and
the GGC subordinators studied by James, Roynette and Yor [5]. For more
developments on T BF , see [7].

2 Investigating the Class CBFa
We have seen that the well known Thorin class T BF corresponds to CBF0, and we
will not go into further investigations in it. The simplest CBF-function is given by
λ �→ λ/(λ + 1).

Point (3) of Theorem 1.1 suggests a generalization of the notion of CBF and
T BF for any parameter a > −1 by introducing the set class CBFa of Bernstein
functions such that the corresponding Lévy measure π has a density of the form
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xa−1k(x) such that k is a completely monotonic function and k(∞) = 0. It is clear
that CBFa ⊂ CBFb for every a ≤ b, and that T BF ⊂ CBFa ∩ SDBF ⊂ CBF
for every 0 ≤ a ≤ 1. The simplest functions in CBFa are given when taking the
complete monotonic functions k of the form k(x) = e−cx , which is the Laplace
transform of the Dirac measure at point c > 0. Then the associated Bernstein
function is

ϕa,b(λ) =
∫ ∞

0
(1 − e−λx) xa−1 e−bx dx =

⎧⎨
⎩

Γ (a)

(
1

ba
− 1

(b + λ)a

)
if a �= 0

log(1 + λ
b
) if a = 0 .

(2.1)

Notice that for a ∈ (−1, 0), these Bernstein functions are those associated to the so-
called tempered stable processes of index α = −a and, for a = 0, it is associated to
the normalized Gamma process. As stated in the next theorem, any CBFa function
is a conic combination of these simple ones. Next theorem is a straightforward
consequence of Theorem 1.1:

Theorem 2.1 (Representation of CBFa-functions) Let a > −1, φ : [0,∞) →
[0,∞), q = φ(0) and d = lim+∞ φ(x)/x < ∞. Then φ belongs to CBFa if, and
only if, it λ �→ φ(λ) − q− dλ is the Mellin convolution of ϕa,1 defined in (2.1) with
some measure. Namely,

φ(λ) =

⎧⎪⎪⎨
⎪⎪⎩
q + dλ + Γ (a)

∫
(0,∞)

(
1 − ua

(u + λ)a

)
σ(du), if a �= 0

q + dλ +
∫

(0,∞)

log

(
1 + λ

u

)
σ(du) if a = 0 ,

(2.2)

where σ is a measure that integrates the function ga(1/t) given by (1.5). In this
case, the Lévy measure associated to φ has the density function

xa−1
∫

(0,∞)

e−xt ta σ (dt), x > 0.

Example 2.2 The stable Bernstein function given by the power function λ �→ λα ,
α ∈ (0, 1), is a trivial example of a function in CBFα , because

λα =
∫ ∞

0
(1 − e−λx)

cα

xα+1 dx, where cα = α

Γ (1 − α)
and x �→ k(x) = x−2α ∈ CM,
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In order to prove Proposition 2.4 below, we need some formalism and a Lemma.
Let Sα, α ∈ (0, 1), denotes a normalized positive stable random variable with
density function fα , i.e.

E[e−λSα ] =
∫ ∞

0
e−λxfα(x)dx = e−λα

, λ ≥ 0, (2.3)

and observe that for any t > 0,

e−tλα = t−1/α
∫ ∞

0
e−λxfα(xt−1/α)dx . (2.4)

Also, let γt denotes a normalized gamma distributed random variable with parameter
t > 0, i.e.

E[e−λγt ] = 1

(1 + λ)t
, λ ≥ 0.

For any positive r.v. S satisfying E[Ss] < ∞, s ∈ R, we adopt the notation S(s) for
a version of the size biased distribution of order s:

P(S[s] ∈ dx) = xs

E[Ss] P(S ∈ dx). (2.5)

Shanbhag and Sreehari [8] showed the remarkable identity in law

γ
1/α
t

d= γαt

S
[−αt]
α

.

from which we can extract from, when taking two independent and identically
distributed random variables Sα and S′

α , that

γ
1/α
1 Sα

d= γ1 Xα, where Xα = Sα

S′
α

d= 1

Xα

(2.6)

d= γα Yα, where Yα = Sα

(S′
α)[−α]

d= 1

Y
[−α]
α

(2.7)

γ
1/α
1/α Sα

d= γ1 Zα, where Zα = Sα

(S′
α)[−1]

d= 1

Z
[−1]
α

, (2.8)

where, in each product, we have used the notation of (2.5) and the r.v.’s involved in
the identities in law are assumed to be independent. Last identities are used in the
following lemma:
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Lemma 2.3 Let α ∈ (0, 1). With the above notations, we have

(1) The function φα(λ) := λα

λα + 1
belongs to CBFα and is represented by

φα(λ) = E

[
λXα

λ + Xα

]
= E

[(
λ

1 + λ Yα

)α]
= 1−E

[
1

(1 + λYα)α

]
, λ ≥ 0;

(2.9)

(2) The function ϕα(λ) := 1 − 1

(λα + 1)1/α
belongs to CBF and is represented by

ϕα(λ) = E
[ λZα

1 + λZα

]
, λ ≥ 0. (2.10)

Proof

(1) Since

1

1 + λα
= E

[
e−λαγ1

]
= E

[
e−λγ

1/α
1 Sα

]
= E

[
e−λγ1 Xα

]
= E

[
1

1 + λXα

]
.

(2.11)

The first equality in (2.9) comes from

φα(λ) = 1 − 1

1 + λα
= 1 − E

[
1

1 + λXα

]
= E

[
λXα

1 + λXα

]
.

Going back to (2.11) and using again (2.6), we obtain the second and third
representations in (2.9) by writing

φα(λ) = λα
E[e−λ γ

1/α
1 Sα ] = λα

E[e−λ γαYα ] = E

[(
λ

1 + λ Yα

)α]
,

and also

φα(λ) = 1 − φα(λ)

λα
= 1 − E

[
1

(1 + λ Yα)α

]
.

Since the third representation of φα meets the one of Theorem 2.1, we deduce
that φα ∈ CBFα .

(2) Similarly, write

ϕα(λ) = 1 − E

[
e
−λ γ

1/α
1/α Sα

]
= 1 − E

[
e−λ γ1 Zα

]
= E

[
λ Zα

1 + λ Zα

]
,

and deduce that ϕα ∈ CBF .

�
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We are now able to exhibit additional links between CBFa, a > 0, and CBF :

Proposition 2.4 The following implications are true:

(1) If 0 < a ≤ 1 and φ ∈ CBF , then λ �→ φ(λa) ∈ CBFa and φ(λa)1/a ∈ CBF .
(2) If a ≥ 1 and ϕ ∈ CBFa , then λ �→ ϕ(λ1/a) ∈ CBF .

Remark 2.5 The first assertion of Proposition 2.4 is a refinement of [7, Corollary
7.15]:

a ≥ 1 and φ(λa)1/a ∈ CBF �⇒ φ ∈ CBF .

The latter could be also obtained by a Pick-Nevanlinna argument as in Remark 3.6
below.

Proof of Proposition 2.4 The second assertion in (1) can be found in [7, Corollary
7.15]. In Example 2.2, we have seen that λ �→ λα ∈ CBFα for every 0 < α ≤ 1,
so, we may suppose that φ has no killing nor drift term. The assertions are a conic
combination argument together with the result of Lemma 2.3. For the first assertion
of (1), use the function φa ∈ CBFa given by (2.9), for the assertion (2), use the
function ϕ1/a ∈ CBF given by (2.10), and get the representations

φ(λa) =
∫ ∞

0
φa

(
λ

u

)
ν(du) and ϕ(λa) =

∫ ∞

0
ϕ1/a

(
λ

u

)
μ(du), λ ≥ 0,

where ν and μ are some measure. 
�

3 A New Injective Mapping from BF onto CBF

We recall that a CBF function is a Bernstein function whose Lévy measure has
a density which is a completely monotonic function. We recall the connection
between CBF-functions; φ is a CBF-function if, and only if, it admits the
representation:

φ(λ) = q + d +
∫

(0,∞)

λ

λ + x
ν(dx), λ ≥ 0, (3.1)

where q, d ≥ 0 and ν is a measure which integrates 1 ∧ 1/x.

Another characterization of CBF functions is given by the Pick-Nevanlinna
characterization of CBF-functions:
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Theorem 3.1 (Theorem 6.2 [7]) Let φ a non-negative continuous function on
[0,∞) is a CBF function if, and only if, it has an analytic continuation on
C(−∞, 0] such that

�(
φ(z)

) ≥ 0, for all z s.t. �(z) > 0.

Notice that any φ ∈ BF has an analytic continuation on the half plane {z, �(z) >

0} which can be extended by continuity to the closed half plane {z, �(z) ≥ 0}
and we still denote by φ this continuous extension. In next theorem we state a
representation similar to (3.1) and valid for any Bernstein function φ. Part (1) of
this theorem is also quoted as [7, Proposition 3.6].1

Theorem 3.2

(1) Let φ ∈ BF represented by (1.4), then, for all λ ≥ 0,

φ(λ) = dλ +
∫ ∞

0

λ

λ2 + u2
v(u) du , (3.2)

where v, given by v(u) := 2�(
φ(iu)

)
/π , is a negative definite function (in the

sense of [7, Definition 4.3]) satisfying the integrability condition

∫ ∞

1

v(u)

u2
< ∞. (3.3)

(2) Conversely, let d ≥ 0 and v : R → R+ be a negative definite function satisfying
(3.3), then

λ �→ dλ +
∫ ∞

0

λ

λ2 + u2
v(u) du ∈ BF .

Proof

(1) We suppose without loss of generality that q = d = 0. In this proof, we denote
by (Ct )t≥0 a standard Cauchy process, i.e. a Lévy process such that E[eiuCt ] =
e−t |u|, u ∈ R. Since

φ(ix) =
∫

(0,∞)

(1 − e−ixs)π(ds), x ∈ R,

1The results in Theorem 3.2 (i), Corollaries 3.4, 3.5 and Proposition 3.8 below can be found, with
different proofs, in [7, Proposition 3.6, Proposition 7.22]. As is stated in [7, pp. 34 & 108 and
reference entries 119, 120], the statements of these results are due to S. Fourati and W. Jedidi and
were, with a different proof, communicated by S. Fourati and W. Jedidi in 2010.
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then, for all λ > 0, we can write

φ(λ) =
∫

(0,∞)

(1 − e−λ s) π(ds) =
∫

(0,∞)

E[1 − e−isCλ ]π(ds)

=
∫

(0,∞)

(∫
R

(1 − e−ius)
λ

π(u2 + λ2)
du

)
π(ds) =

∫
R

λ

π(u2 + λ2)
φ(iu) du

=
∫ ∞

0

λ

π(u2 + λ2)

(
φ(iu) + φ(−iu)

)
du = 2

π

∫ ∞

0

λ

(u2 + λ2)
�(

φ(iu)
)
du.

Notice that v(u) := 2�(
φ(iu)

)
/π is an even function on R, is a [0,∞)-valued

negative definite function in the sense of [7, Definition 4.3], and representation
(3.2) proves that it necessarily satisfies (3.3).

(2) By [4, Corollary 1.1.6], every [0,∞)-valued, negative definite function v, has
necessarily the form

v(u) = q + cu2 +
∫
R{0}

(1 − cos ux)μ(dx),

where q, c ≥ 0 and the Lévy measure μ is symmetric and integrates x2 ∧ 1.
We deduce that v is an even function and necessarily c = 0 because of the
integrability condition (3.3). So, v is actually represented by

v(u) = q + 2
∫

(0,∞)

(1 − cos ux)μ(dx).

Then, observe that

∫ ∞

1

v(u)

u2
du = q + 2

∫
(0,∞)

θ(x) μ(dx) < ∞

where

θ(x) =
∫ ∞

1

1 − cos(xt)

t2
dt = x

∫ ∞

x

1 − cos t

t2
dt ≤ 2.

Since limx→0 θ(x)/x = π/2, deduce thatμ necessarily integrates x∧1. Finally,
v is the real part of some Bernstein function φ and conclude with part (1) of this
theorem.


�
Remark 3.3

(i) Note that condition (3.3) on the negative definite function v was obtained as an
immediate consequence of representation (3.2) and is equivalent, in our context,
to the usual integrability condition (on the Lévy measure at 0) for a Lévy process
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to have finite variation paths, see the book of Breiman [3, Exercise 13 p. 316]. In
Vigon’s thesis, [10, Proposition 1.5.3] one can also find a nice proof of condition
(3.3) based on a Fourier single-integral formula.

(ii) In (3.2), it is not clear that the constant functions belong to CBF−. They actually
do, since for all q ≥ 0 and λ > 0,

q = 2

π

∫ ∞

0

λ q

λ2 + u2
du,

then λ �→ φ(λ) = q ∈ CBF−.

Now, it appears natural to introduce the class of functions CBF− associated to
negative definite functions :

CBF− :=
{
λ �→ ϕ(λ) = q + dλ +

∫ ∞

0

λ

λ + u2
v(u) du

}
,

where q, d ≥ 0 and v : [0,∞) → [0,∞) is a negative definite function, necessarily
satisfying the integrability condition (3.3). It is obvious that CBF− is a (strict)
subclass of CBF .

A reformulation of last theorem gives the following two corollaries quoted as [7,
Proposition 7.22 and Propositon 3.6] respectively. The reader is also addressed to
the footnote before Theorem 3.2.

Corollary 3.4 (Classes BF and CBF− are one-to-one)

(1) If φ is in BF , then λ �→ √
λφ(

√
λ) is in CBF−;

(2) Conversely, any function in CBF− is of the form λ �→ √
λφ(

√
λ), where φ is in

BF .

Corollary 3.5 Any Bernstein function leaves globally invariant the cônes

{
ρeiπθ ; ρ ≥ 0, α ∈ [−σ, σ ] }, for any σ ∈ [0, 1

2
].

Proof The function ψu(λ) = λ/(λ2+u2), u > 0, maps the half-line
{
ρeiπσ ; ρ ≥

0
}
onto in the cône

{
ρeiπθ ; ρ ≥ 0, θ ∈ [−σ, σ ] }. Since this cone is convex and

closed by any conic combination of ψu, deduce that the integral

2

π

∫ ∞

0

λ

λ2 + u2
�(

φ(iu)
)
du

is in the same cône. 
�
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Remark 3.6 The property in the last corollary has to be compared with the much
stronger property fulfilled by a CBF-function: any CBF-function has an analytic
continuation on C \ (−∞, 0] and this continuation leaves globally invariant the
cônes

{
ρeiπθ ; ρ ≥ 0, θ ∈ [0, σ ]

}
, (3.4)

for any σ ∈ [0, 1). Moreover this property fully characterizes the class of CBF-
functions: the Pick-Nevanlinna characterization given in Theorem 3.2 is equivalent
to invariance of the cone (3.4) for σ = 1. This property is not satisfied by
all Bernstein functions. For instance, φ(λ) = 1 − e−λ ∈ BF \ CBF , because
� (

5eiπ/4
)

> 0 but � (
φ(5eiπ/4)

)
< 0.

In the following results, we give some extension of Theorem 3.4 by replacing the
function λ �→ √

λ by other functions:

Corollary 3.7 Let φ ∈ BF . Then,

(1) For any function ψ such that λ �→ ψ(λ2) is in BF , we have ψ2 ∈ BF and
φ(ψ) ∈ CBF−.

(2) For any function ψ such that ψ2 is in CBF , the following functions are in CBF:

φ(ψ) · ψ,
ψ

φ(ψ)
, φ(1/ψ) · ψ,

ψ

φ(1/ψ)

and also

λ · φ(ψ)

ψ
,

λ

φ(ψ) · ψ
, λ · φ(1/ψ)

ψ
,

λ

φ(1/ψ) · ψ
.

Proof

(1) Since ψ1(λ) := ψ(λ2) ∈ BF , then ψ2(λ) := ψ2(λ) = ψ1(
√

λ)2 ∈ BF . To
get the last claim, just check the complete monotonicity of the derivative of
ψ2. The second assertion is seen by stability by composition of the class BF :
since λ �→ φ(ψ1(λ)) = φ(ψ(λ2)) ∈ BF , then Corollary 3.4 applies on the last
function.

(2) Recall S is the class of Stieltjes functions, i.e. the class of functions obtained
by a double Laplace transform (see [7]) and observe that

ϕ ∈ CBF ⇐⇒ λ �→ ϕ(λ)

λ
∈ S.
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As consequence of [7, (7.1), (7.2), (7.3) pp. 96], obtain that

√
λ φ(

√
λ) ∈ CBF ⇐⇒

√
λ

φ(
√

λ)
∈ CBF ⇐⇒ √

λ φ(1/
√

λ) ∈ CBF ⇐⇒
√

λ

φ(1/
√

λ)
∈ CBF

(3.5)

⇐⇒

φ(
√

λ)√
λ

∈ S ⇐⇒ 1√
λφ(

√
λ)

∈ S ⇐⇒ φ(1/
√

λ)√
λ

∈ S ⇐⇒ 1√
λφ(1/

√
λ)

∈ S. (3.6)

To get the first claim, compose the four CBF-functions in (3.5) with ψ2 ∈
CBF , and use the stability by composition of the class CBF [7, Corollary 7.9.].
To obtain the last claim, also compose the four S-functions in (3.6) with ψ2 ∈
CBF , use [7, Corollary 7.9], to get that the compositions stays in S , and finally
multiply by λ to get the announced CBF-function in the Corollary.


�
Notice that if ψ belongs to BF , then ψ(

√
λ) satisfies property (1). If further ψ

belongs to CBF then ψ(
√

λ) and
√

ψ(λ) both satisfy property (2).
Now, we summarize the properties that can be stated when composing a

Bernstein function φ with the stable Bernstein function of Example 2.2.

Proposition 3.8 Let α ∈ (0, 1], φ ∈ BF , π be the Lévy measure of φ and π the
right tail of π : π(x) := π(x,∞), x > 0. Then,

(1) λ �→ φα(λ) := λ1−αφ(λα) ∈ BF . Further, φα ∈ CBF whenever

x �→ πα(x) := α xα−1 π(xα) ∈ CM (which is true if φ ∈ CBF);

(2) λ �→ λγ φ(λα) ∈ CBF (resp. CBF−) if α ≤ 1
2 and γ ∈ (α, 1 − α] (resp.

γ = 1
2 ).

Proof Recall that fα , the density function of normalized positive stable r.v., is given
by (2.3).

(1) Since λ �→ λα, λ1−α are both in CBF , there is no loss of generality to take
q = d = 0 in the Lévy-Khintchine representation (1.4) of φ, and then to write

λ1−αφ(λα) = λ

∫ ∞

0
e−λαtπ(t)dt.

It is sufficient to prove that λ �→ ∫ ∞
0 e−λαtπ(t)dt is the Laplace transform of a

non increasing function. For that, use (2.4) and Fubini’s theorem and get

∫ ∞

0
e−λαtπ(t)dt =

∫ ∞

0
e−λxΠα(x)dx,
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where

Πα(x) :=
∫ ∞

0
fα

( x

t1/α

)
π(t)

dt

t1/α
=

∫ ∞

0
πα

(x

z

)
fα(z)

dz

z
,

and the second representation by the change of variables z = xt− 1
α . Since

for each z > 0, the functions z �→ πα(x/z) are non-increasing (respectively
completely monotone), deduce the same for Πα .

(2) Observe that for α ≤ 1/2, the function λ �→ λα satisfies the properties of
Corollary 3.7: point (2) yields that the function λ �→ λ1−αφ(λα) is in CBF ,
and point (2) yields that

√
λφ(λα) is in CBF−. Taking representation of φ in

Theorem 3.2, we obtain

λγ φ(λα) =
∫ ∞

0

λγ+α

λ2α + u2
v(u)du, where v(u) = 2

π
�(

φ(iu)
)
.

Since 0 < 2α ≤ γ + α ≤ 1, the function λ �→ λγ+α/(λ2α + u2) leaves the
half plane {�(λ) > 0} globally invariant, and then, is a CBF-function for every
u > 0. By the argument of conic combination, this property remains true for
the function λ �→ λγ φ(λα) is CBF . Now, the function ψ(λ) = λα satisfies
property (2) of Corollary 3.7, and then,

√
λφ(λα) ∈ CBF−.


�
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