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A transversality condition of codimension one submanifolds

Abstract. In this work, we wish to derive a condition of transversality of

two hypersurfaces Mn and P n of M
n+1

along the boundary ∂Mn, provided
that ∂Mn ⊂ P n. This condition is given by the transversality of the classical
Newton transformation Tr. In particular we proof that at a point p of the
boundary ∂Mn and for every 1 ≤ r ≤ n− 1 we have:

〈Trν, ν〉 = ρrσr (1)

Where ρ = 〈ξ, ν〉 , σr is the r-th symmetric function of the principal curva-
tures of the inclusion ∂Mn ⊂ P n with respect to the outward unit normal
vector field ν normal to ∂Mn, and ξ is the vector field normal to P n in

M
n+1

.
Relation (1) shows that the ellipticity of the Newton transformation Tr,

for some 1 ≤ r ≤ n−1 on Mn, implies the transversality of the hypersurfaces
Mn and P n along ∂Mn. A similar formula of (1) was also obtained in [1] by
the author and M.Benalili in context of pseudo-Riemannian spaces. It is to
emphasize the importance of the application of Newton transformations in
intrinsic Riemannian geometry (see [3], [4], [7] and [8]).

The formula for the Newton transformations implies the relation between
transversality of Mn and P n and ellipticity of Tr provided that P n is totally

geodesic in M
n+r

.
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Surgery by William Paul Thurston in the glued space of star geo-
metric bodies in three or more dimensions

Mathematics Subject Classification (MSC): 51F, 51H, 51H20,
52A23

Abstract. In this article, gluing convex (nonconvex) star-hedral polyhedral
along their sides using proper pairing, we will construct Euclidean, spherical
and hyperbolic manifolds, and with present the author’s method of ‘trans-
forming of manifolds’ that allows gluing the fundamental domain of the
fundamental group of manifolds of a star geometric body based on structural
models of metric geometry and metric topology, and we obtain a partition
of a star geometric body with the symmetry of an arbitrary simpletial group
by cutting and re-gluing in three or more dimensions.
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The B-completion of fuzzy quasi-metric spaces

Mathematics Subject Classification (MSC): 54A40

Abstract. We describe an approach for completing any fuzzy quasi-metric
space. The completion is constructed as an addition to the bicompletion
of the original fuzzy quasi-metric space. For balanced fuzzy quasi-metric
spaces, the completion produced coincides, up to isometry, with the Doitchi-
nov completion. We present and explore a new class of maps, which we call
balanced maps, in response to the question of whether uniformly continuous
maps between fuzzy quasi-metric spaces can be extended to the constructed
completion.
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Quantale-valued generalizations of approach vector spaces over
quantale valued approach division rings

Mathematics Subject Classification (MSC): 54H13, 34A05, 46A99

Abstract. The motivation of this work is to study the concept of quantale-
valued approach vector spaces over the quantale-valued approach division
rings. The reason behind this generalization is crept into the notion of
approach vector spaces attributed to R. Lowen and S. Verwulgen. They
considered approach vector spaces over the reals, whereas our approach is
more general, as we consider arbitrary division rings instead of real vec-
tor spaces. In so doing, we first introduce the concepts of approach rings,
approach division rings, and explore some of their basic facts. We deter-
mine a suitable class of approach division rings that can be used as a scalar
domain for approach vector spaces, here we talk about the action of ap-
proach division ring on approach vector spaces. Furthermore, we generalize
approach rings and approach division rings into quantale-valued approach
rings and quantale-valued approach division rings exploring various results
from quantale-valued approach vector spaces and some of their categorical
aspects.
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Ekeland variational principle and some of its equivalents on a
weighted graph, completeness and OSC property

Mathematics Subject Classification (MSC): 47H10, 05C22, 06F30,
54E50

Abstract. We prove a version of Ekeland Variational Principle (EkVP) in a
weighted graph G and its equivalence to Caristi fixed point theorem and to
Takahashi minimization principle. The usual completeness and topological
notions are replaced with some weaker versions expressed in terms of the
graph G. The main tool used in the proof is the OSC property for sequences
in a graph. Converse results, meaning the completeness of graphs for which
one of these principles holds is also considered.
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A generalization of Doitchinov’s quasi-uniform completion

Mathematics Subject Classification (MSC): 54D35, 54E15, 54E50,
54E55

Abstract. In this talk, we develop a completion theory for all quasi-uniform
spaces, which we call Λ-completion. One of the most important features of
this completion theory is the adoption of requirements posed by Doitchinov
for a natural generalization of the classical theory of uniform completeness.
The core concept of this approach is the notion of cut of nets, which results
from the combination of two notions: (1) The notion of Dedekind-MacNeille
cut in order theory, and (2) the notion of D-Cauchy net of Doitchinov. In
the uniform case, the notion of cut of nets coincides with the well known
notion of equivalence class of nets.

Athanasios Andrikopoulos and Nikolaos Sampanis
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A topological characterization of the existence of some notions of
generalized stable sets

Mathematics Subject Classification (MSC): 91A30, 91A35, 91B06,
91B14, 91B15

Abstract. The theory of optimal choice sets is a solution theory that has
a long and well-established tradition in social choice and game theories.
Some of important general solution concepts of choice problems when the
set of best alternatives does not exist (this problem occurs when the pref-
erences yielded by an economic process are cyclic) are the Stable Set (Von
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Neumann-Morgenstern set), Generalized Stable set (Van Deemen set), Ex-
tended Stable set, m-Stable set and w-Stable set. In this talk, we present a
topological characterization of the Generalized Stable set (Van Deemen set),
the Extended Stable set, the m-Stable set and the w-Stable set. This is done
in a general framework for which dominance relation refers to an arbitrary
binary relation defined on a set of alternatives that is not necessarily finite.

Sergey A. Antonyan, Jan van Mill and James E. West
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e-mail: antonyan@unam.mx

Based-free involutions

Mathematics Subject Classification (MSC): Primary 57N20;
Secondary 57S99

Abstract. By a space we mean a separable metrizable topological space.
An involution on a space is called based-free, if it has a unique fixed-point.
For Hilbert space `2 we denote by σ the standard based-free involution given
by the formula σ(x) = −x. It was proved in [1] that (`2, σ) is universal for all
spaces with based-free involutions. This means that for every space X with
a based-free involution τ : X → X, there exists an equivariant topological
embedding (X, τ) ↪→ (`2, σ).

Let B denote the unit ball in `2, that is, B := {x ∈ `2 : ‖x‖ ≤ 1}. By
abuse of notation, we denote the restriction σ�B by σ as well. One of the
goals of this talk is to provide a more transparent and direct proof of this fact.
Our argument is based on the following result which is also of an independent
interest: for every space (X, τ) with a based-free involution, the equivariant
maps (X, τ)→ (B, σ) separate points and closed sets. We also establish two
new characterizations of equivariant based-free compactifications.
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Sierpiński carpet and rigidity of locally symmetric rank one man-
ifolds

Abstract. We create some analogue of the Sierpiński carpet for nilpotent
geometry on horospheres in symmetric rank one negatively curved spaces
Hn

F over division algebras F 6= R, i.e over complex C, quaternionic H, or
octonionic/Cayley numbers O. The original Sierpiński carpet in the plane
was described by Wac law Sierpiński in 1916 as a fractal generalizing the
Cantor set.

Making such a Sierpiński carpet with a positive Lebesgue measure at the
sphere at infinity ∂Hn

F and defining its ”stretching”, we construct a non-rigid
discrete F-hyperbolic groups G ⊂ IsomHn

F whose limit set Λ(G) is the whole
sphere at infinity ∂Hn

F . This answers questions by G.D.Mostow [6], L.Bers
[4] and S.L.Krushkal [5] about uniqueness of a conformal or CR structure
on the sphere at infinity ∂Hn

F compatible with the action of a discrete group
G ⊂ IsomHn

F .
Previously, for the real hyperbolic spaces, this problem was solved by

Apanasov [1, 2]. Due to D.Sullivan [7] rigidity theorem generalized by
Apanasov [2] and [3], Theorem 5.19, the complement of the constructed
class of discrete groups G ⊂ IsomHn

F (having a positive Lebesgue measure
of the set of vertices of its fundamental polyhedra at infinity) whose limit
set Λ(G) is the whole sphere at infinity ∂Hn

F consists of groups rigid in the
sense of Mostow.
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Differential calculuses in group algebras

Abstract. The task of studying derivations in different algebras is well
known. The method proposed in the joint work of the author with A.S.
Mishchenko and A.I. Stern will be discussed. The method consists in iden-
tifying derivations and characters on the groupoid of an adjoint action.

It turns out that if we consider groupoids of another action as a groupoid,
we can generate other families of operators, not only those obeying the
Leibniz rule, with the help of characters. In particular, one can obtain in
this way the well-known differential calculus of Fox.

It is noteworthy that in describing such operator families, among other
things, other interesting geometrical constructions arise, in particular the
ends of groups.

25



The results which will be discussed during the talk also have an inter-
pretation in terms of coarse geometry, which will also be discussed.

Ferihe Atalan
Department of Mathematics, Atilim University, 06830 Ankara, Turkey
e-mail: ferihe.atalan@atilim.edu.tr

Outer automorphisms of the mapping class groups of some spo-
radic nonorientable surfaces

Mathematics Subject Classification (MSC): 20F38, 57K20

Abstract. In this talk, we will first mention the definitions of some basic
concepts such as curves on a nonorientable surfaceN of genus g, the mapping
class group Mod(N) of N , puncture slide, and Y−homeomorphisms. Then,
we will give an idea of the proof of the fact that the automorphism group
of Mod(N) is isomorphic to Mod(N) for the genus g > 4 (joint with B.
Szepietowski, [1]). Later, we consider the cases not covered by this result.
In particular, we will give an outline of the proof of the fact that the case
g = 1. If time permits, I will also discuss the necessary tools used in proofs.
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Liftable homeomorphisms of real projective plane

Mathematics Subject Classification (MSC): 57M12, 57M60

Abstract. Let p : S̃ → S be a (branched) covering. A homeomorphism of
S, say f , lifts to a homeomorphism of S̃, if there exists a homeomorphism f̃
of S̃ such that pf̃ = fp. In this talk, we give conditions for regular branched
finite abelian covers of the real projective plane, where each homeomorphism
of the base (preserving the branch locus) lifts to a homeomorphism of the
covering surface.
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Inner automorphisms of an abelian extension of a quandle

Mathematics Subject Classification (MSC): 57K12, 57K10

Abstract. Let (Q, ∗) be a quandle and A an abelian group. A quandle
2-cocycle is a function φ : Q × Q → A satisfying (i) φ(x, x) = 0 for all
x ∈ Q and (ii) φ(x, y) + φ(x ∗ y, z) = φ(x, z) + φ(x ∗ z, y ∗ z) for x, y, z ∈
Q. By a quandle 2-cocycle, one can define a so-called quandle cocycle link
invariant, which are not only classical knot invariants but higher dimensional
knot invariants, or define a new quandle structure on Q×A by defining an
operation (x, a)∗̃(y, b) = (x∗ y, a+φ(x, y)) for (x, a), (y, b) ∈ Q×A. We call
such a quandle as an abelian extension of Q by A and denote it by Q×φ A.

In this talk, we will discuss about inner automorphisms of ableian ex-
tension Q×φ A in terms of inner automorphisms of the underlying quandle
Q.
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RRR-rigid countably compact spaces

Mathematics Subject Classification (MSC): Primary 54C30;
Secondary 54D35, 03E17

Abstract. A space X is called Y -rigid if any continuous map f : X → Y
is constant. For each cardinal κ we construct an infinite regular countably
compact space Xκ such that Xκ is Y -rigid for any T1 space Y of pseudochar-
acter ≤ κ. This result resolves two problems posed by Tzannes in [4]. A
regular separable first-countable countably compact space is called a Nyikos
space. The existence in ZFC of a noncompact Nyikos space is still an open
problem. We construct a consistent example of Nyikos R-rigid space. To
construct the aforementioned example we developed a technique of embed-
ding into first-countable countably compact spaces. In particular, we show
that assuming min{s, b} = c each regular first-countable space of weight
< c embeds into a regular first-countable countably compact space. Finally,
assuming b = c and the existence of a Pc-point we prove that each Tychonoff
first-countable space embeds into a Tychonoff first-countable countably com-
pact space. The results can be found in [1, 2, 3].
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Topology and dynamics of W -sets in 2-dimensional manifolds

Mathematics Subject Classification (MSC): 37B30, 57K99

Abstract. In this talk we introduce the notion of W -set for a flow defined
on a compact 2-manifold. These sets encapsulate the asymptotic dynamics
of the flow and are a natural generalization of Morse decompositions. We
present some results that relate the topology and Conley index of an W -set
with the topology of the phase space. In addition, we present topological
characterizations of the sphere and the torus in terms of the existence of
flows having particular W -sets.
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Semi-equivelar gems of PL d-manifolds

Mathematics Subject Classification (MSC): Primary 57Q15;
Secondary 52B70, 05C10, 05C15, 52C20

Abstract. We define a notion of (f0, f1, . . . , fd)-type semi-equivelar gems
for closed connected d-manifolds, related to regular embedding of gems Γ
representing M on a surface S such that the face-cycles at all the vertices of
Γ on S are of the same type. The term is inspired by semi-equivelar maps
of surfaces. Given a surface S having non-negative Euler characteristic, we
find all regular embeddings on S and then construct a genus-minimal semi-
equivelar gem (if exists) of each such type embedded on S. Further, we
construct some semi-equivelar gems as follows:
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(1) For each connected surface K, we construct a genus-minimal semi-
equivelar gem that represents K. In particular, for K = #n(S1 × S1)
(resp., #n(RP2)), the semi-equivelar gem of type ((4n + 2)3) (resp.,
((2n+ 2)3)) is constructed.

(2) Given a closed connected orientable PL d-manifold M of regular genus
at most 1, we show that M admits a genus-minimal semi-equivelar
gem.

Samik Basu, Ramesh Kasilingam and Priyanka Magar-Sawant
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Smooth structures on Connected Sum of Projective spaces

Mathematics Subject Classification (MSC): Primary 57N70,
57R55; Secondary 55P10, 57Q60

Abstract. The study of the inertia group of manifolds leads to the study
of the classification of smooth structures on it. We will discuss the same in
the talk for the connected sum of manifolds. We show that the concordance
inertia group of individual manifolds completely determines the concordance
inertia group of the connected sum of manifolds. Further, we discuss the
classification of smooth structure on M , up to taking connected sum with
projective spaces. In particular, we classify all smooth structures on #kCP n,
up to isotopy, in lower dimensions.
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A Generalization for the Jones Polynomial for N-Polar Knots

Mathematics Subject Classification (MSC): 57M27

Abstract. We introduce some invariants of 2-polar knots focusing on the
Xp polynomial that has been introduced recently. The main observation
in the paper is that we introduce a methodology to obtain the general Xp

polynomial for n-polar knots and links, by defining what we call the finishing
states, and then we use rooted labeled trees to classify n-polar finishing states
and hence general polynomial invariants for n-polar knots. We illustrate the
case of planar Xp polynomial for 3-polar knots as an example.
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[3] Goundaroulis, D., Gügümcü, N., Lambropoulou, S., Dorier, J., Stasiak
A., and Kauffman L.H., Topological models for open knotted protein chains
using the concepts of knotoids and bonded knotoids. Polymers 2017, 9(9),
444.
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Interval-valued topology on soft sets

Mathematics Subject Classification (MSC): 54A40, 54A05, 06D72

Abstract. In this paper, we firstly introduce the interval-valued fuzzy topol-
ogy on the family of soft sets by using an interval-valued fuzzy mapping.
Also, with the help of examples, we elucidate the relationships among these
concepts. In fact, the interval-valued fuzzy topology τ = [τ−, τ+] produces
two fuzzy topologies τ−, τ+ on the family of soft sets given in [1]. Later,
we obtain that each interval-valued fuzzy topology is a descending fam-
ily of soft topologies. Finally, we give some topological structures such as
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interval-valued fuzzy neighborhood system of a soft point, base and sub-
base of τ . Using these concepts, we define the concepts of interval-valued
fuzzy subspace, direct sum, product, continuous mapping and investigate
relationships among them.
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On the structure of the level set

Mathematics Subject Classification (MSC): 53A04, 53A05, 53A31

Abstract. In this paper, we consider the question of the structure of the
set of submersions for which all level surfaces are linearly connected sets [1].

Let C1(Rn, R1) the set of all differentiable functions of the class C1. On
the set C1(Rn, R1), we introduce the weak (C1-compact-open) topology [3].

The set of all Cr-smooth mappings f : M → N is denoted by Cr(M,N),
where M,N are smooth manifolds of the class Cr. Suppose that r = 1, 2, ...
[2].

The weak topology (C1-compact-open topology) in Cr(M,N) is gener-
ated by sets defined as follows.

Let f ∈ Cr(M,N) and let (ϕ, U), (ψ, V ) be maps of manifolds M,N .
Let, further, K ⊂ U be a compact set such that f(K) ⊂ V ; let, 0 < ε < +∞.

Prebasic neighborhood

ℵr(f, (ϕ, U), (ψ, V ), K, ε) (1)
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weak topology is defined as the set of such Cr-maps g : M → N as g(K) ⊂ V
and for any x ∈ ϕ(K), k = 0, ..., r,

‖Dk
(
ψfϕ−1

)
(x)−Dk

(
ψgϕ−1

)
(x)‖ < ε.

This means that local representations of maps f, g, together with their
first r derivatives, differ by no more than at ε each point of the compact set
K.

The weak topology in Cr(M,N) is generated by the sets (1); this defines
the topological space Cr

W (M,N). The neighborhood of a point f with re-
spect to this topology is therefore any set containing the intersection of a
finite number of sets of type (1) [3].

Here, as a manifold N , we consider a one-dimensional manifold R1 and
assume that the r = 1. Space C1(Rn, R1) is considered with a weak topology
(Cr-compact-open topology). It is known that a space Cr(M,N) with a
weak topology has a countable base.

Denote by the LS(Rn, R1) set of submersions for which all level surfaces
are linear connected. The following theorem gives information about the
structure of the set LS(Rn, R1).

Theorem. The set LS(Rn, R1) is a closed subset of the space C1(Rn, R1)
of all differentiable functions of the class C1.
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On axiomatic homology theory of general topological spaces

Mathematics Subject Classification (MSC): 55N05, 55N07, 55U35

Abstract. On the category K2
CM of pairs of compact metric spaces the exact

homology theory was defined by N. Steenrod, that is known as the classical
Steenrod homology theory. J. Milnor constructed the exact homology theory
on the category K2

C of pairs of compact Hausdorff spaces, which is isomorphic
to the Steenrod homology theory on the subcategoryK2

CM and which satisfies
the so-called ”modified continuity” property: if X1 ← X2 ← X3 ← . . . is
an inverse sequence of compact metric spaces with inverse limit X, then for
each integer n there is an exact sequence:

0→ lim←−
1Hn+1(Xi)

β−→ Hn(X)
γ−→ lim←−Hn(Xi)→ 0, (1)

where H∗ is the Steenrod (Milnor) homology theory. There are exact homol-
ogy theories defined by other authors (A. N. Kolmogoroff, G. Chogoshvili,
K. A. Sitnikov, A. Borel and J. C. Moore, H. N. Inasaridze, D. A. Edwards
and H. M. Hastings, W. S. Massey, E. G. Sklyarenko) that are isomorphic
to the Steenrod homology theory on the category K2

CM and so, satisfy the
modified continuity axiom.

On the category K2
C the axiomatic characterization is obtained by N.

Berikashvili, L. Mdzinarishvili and Kh. Inasaridze, L. Mdzinarishvili, Kh.
Inasaridze. The connection between these axiomatic systems is studied in
the paper [1].

In the paper [2] we have generalized the result for general topological
spaces. In particular, we have defined the Alexander-Spanier normal co-
homology theory based on all normal coverings and have shown that it
is isomorphic to the Alexandroff-Čech normal cohomology [2]. Using this
fact and methods developed in [3], we constructed an exact, the so-called
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Alexander-Spanier normal homology theory H̄N
∗ (−,−;G) on the category

K2
Top, which is isomorphic to the Steenrod homology theory on the subcate-

gory of compact pairs K2
C . Moreover, we gave an axiomatic characterization

of the constructed homology theory [2]. In this paper we will use the method
of construction of the strong homology theory to show that the homology
theory H̄N

∗ (−,−;G) is strong shape invariant.
The talk partially is based on joint works with co-authors Vladimer Bal-

adze (BSU) and Leonard Mdzinarishvili (GTU).
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On a space of τ -continuous functions

Abstract. Throughout the paper all spaces are assumed to be Hausdorff.
Denote by F (X, Y ) the set of all functions from X to Y and Cτ (X, Y ) the
set of all τ -continuous functions from X to Y with the topology of pointwise
convergence.

Let X and Y be topological spaces. A function f : X → Y is said to
be τ -continuous [1] if for every subspace A of X such that |A| = τ , the
restriction f |A is continuous. It is clear that every continuous function is
τ -continuous.
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The following example shows that a τ -continuous function need not to
be continuous, in general.

Example. Let R be the real line and θZ the family consisting of all sets
whose cardinality of the complement is at most countable. It is easy to verify
that (R, θZ) is a topological space. This topological space is called Zariski
space. For X = R with the Zariski topology and Y = R with the usual
topology, the identity map from X to Y is ω-continuous but not continuous.

Corollary 1. If X is Zariski space, then any mapping of X to a topo-
logical space Y is ω-continuous.

A subset F of a space X is said to be τ -closed [2] if for every B ⊂ F with
|B| = τ ,the closure B in X of the set B is contained in F . The τ -closure of
a set A is defined as [A]τ =

⋃
{[B] : B ⊂ A, |B| = τ} and a set A is said to

be τ -dense in X if [A]τ = X.

Note that every closed set is τ -closed. Conversely, the set of all rational
numbers is ω-closed but not closed in (R, θZ).

In a paper [3] obtained the following result:

Proposition 1. For a mapping f : X → Y of arbitrary topological
spaces X and Y the following conditions are equivalent:

(1) f : X → Y is τ -continuous;

(2) for every closed set F in Y , the preimage f−1(F ) is τ -closed in X;

(3) for every τ -closed set F in Y, the preimage f−1(F ) is τ -closed in X;

(4) f([A]τ ) ⊂ [f(A)]τ for an arbitrary subset A ⊂ X;

(5) [f−1(B)]τ ⊂ f−1([B]τ ) for an arbitrary subset B ⊂ Y .

Proposition 2. If Y ⊂ Z, then Cτ (X, Y ) is a subspace of the space
Cτ (X,Z); it is closed if Y is closed in Z.

Theorem. Let X be a topological space. Then Cτ (X, Y ) is dense in
F (X, Y ).

Corollary 2. Let X be a topological space. Then c(Cτ (X,R)) = ℵ0.
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On functional tightness of the space of semiadditive functionals of
finite support

Abstract. In this talk, we study the behavior of the functional tightness of
topological spaces under the influence of the functor of semiadditive func-
tionals of finite support. It is proved that the functor OSn preserves the
functional tightness of compact spaces.

Let X be a compactum (compact and Hausdorff). By C(X) denote the
space of all continuous functions f : X → R with usual pointwise operations
and the sup-norm, i.e. with the norm ‖f ‖ = sup {|f (x)| : x ∈ X}. For each
c ∈ R by cX denote constant function defining by the formula cX (x) = c,
x ∈ X.

A functional ν : C(X)→ R is called:
1) weakly additive if ν(ϕ + cX) = ν(ϕ) + c · ν(1X) for all c ∈ R and

ϕ ∈ C (X);
2) order-preserving, if for functions ϕ, ψ ∈ C (X) from ϕ ≤ ψ it follows

ν (ϕ) ≤ ν (ψ);
3) normed if ν (1X) = 1;
4) positively-homogeneous, if ν (λϕ) = λν (ϕ) for all ϕ ∈ C (X), λ ∈ R+,

where R+ = [0, +∞);
5) semiadditive, if ν(f + g) ≤ ν(f) + ν(g) for all f, g ∈ C(X).
For a compactum X by OS(X) [1] denote the set of all functionals satis-

fying above conditions 1) - 5). Elements of the set OS(X), are shortly called
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semiaadditive functionals. Note that each functional ν ∈ OS(X) is a con-
tinuous mapping of C(X) to R, i.e. the set OS(X) is a subset of Cp(C(X)).
This set is equipped with the pointwise topology. Sets in the form

O(µ;ϕ1, ..., ϕk; ε) = {ν ∈ OS(X) : |µ(ϕi)− ν(ϕi)| < ε, i = 1 , ..., k}

where ϕi ∈ C (X), i = 1, ..., k, ε > 0, generates a neighborhood base of a
functional µ in OS(X).

Recall that a functional µ is said to be supported on a set F if φ(F ) = 0
implies µ(φ) = 0 for every φ ∈ C(X). The minimal closed set F on which
the functional µ is supported, is called the support of µ. The support of a
functional µ is denoted by supp(µ).

For a space X and the functor OS put

OSn(X) = {µ ∈ OS(X) : |supp(µ)| ≤ n},

where n is a natural number.
Let X and Y be topological spaces. A function f : X → Y is said to

be τ -continuous [2] if for every subspace A of X such that |A| ≤ τ , the
restriction f |A is continuous.

Definition. [2] The functional tightness t0(X) of a space X is minimum
cardinal number τ such that every τ -continuous real-valued function on X
is continuous.

Theorem. For an arbitrary infinite compactum X we have t0(X) =
t0(OSn(X)).
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Uniformly linked space and its hyperspace

Abstract.
Definition 1 [1]. Let X be a nonempty set. A family U of covers of a set
X is called uniformity on X if the following conditions are satisfied:

(P1) If α ∈ U and α is inscribed in some cover β of the set X, then
β ∈ U .

(P2) For any α1 ∈ U , α2 ∈ U there exists α ∈ U , which is inscribed in
α1 and α2.

(P3) For any α ∈ U , there exists β ∈ U strongly star inscribed in α.

(P4) For any x, y of a pair of different points of X, there exists α ∈ U
such that no element of α contains both x and y.

A family U consisting of a set X, satisfying conditions (P1) - (P3) is
called pseudo-uniformity on X and a pair (X, U) is called a pseudo-uniform
space.

A family U consisting of a set X, satisfying conditions (P1) - (P4) is
called uniformity on X and a pair (X, U) is called a uniform space.

Proposition 1 [1]. If B is the base of a uniform space (X, U), then
P (B) = {P (α) : α ∈ B} forms a base of some uniformity expU on expX.

A uniform space (expX, expU) is called a hyperspace of closed sub-
sets of a uniform space (X, U), and uniformity expU is called Hausdorff
uniformity on expX.

Remark 1 [1]. Let expcX be the set of all nonempty compact subsets
of the uniform space (X, U). For each α ∈ U , put

K(α) = {〈α′〉 : α′ ⊆ α andα′ is finite} .

Note that K(α) is the cover of the set expcX.

Definition 2 [1]. A uniform space (X, U) is called uniformly linked if
for any cover α ∈ U there exists a natural number n, such that to any points
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x, y ∈ X one can choose a linked sequence {A1, A2, . . . , Ak} ⊂ α , such
that k ≤ n, x ∈ A1, y ∈ Ak.

Proposition 2 [1]. For a uniform space (X, U), the following conditions
are equivalent:

(1) The uniform space (X, U) is uniformly connected.
(2) The uniformity of U does not contain disjoint covers consisting of at

most one element.
(3) For any α ∈ U and for any point x ∈ X,

⋃∞
n=1 αn(x) = X.

(4) For any α ∈ U and for any points of x, y ∈ X there exists a finite
linked sequence {A1, A2, . . . , Ak} ⊂ α such that x ∈ A1, y ∈ Ak.

Theorem 1. A uniform space (X, U) is uniformly linked if and only if
the uniform space (expcX, expc U) is uniformly linked.

It follows from Proposion 2 that every uniformly linked uniform space
(X, U) is uniformly connected.

Corollary 1. A uniform space (X, U) is uniformly connected if and
only if the uniform space (expcX, expc U) is uniformly connected.
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Order convergence in the spaces of continuous functions

Mathematics Subject Classification (MSC): 46A40, 54A20, 54C35

Abstract. A net in a poset converges in order if it is “squeezed” between
an increasing and a decreasing nets with the same extrema. This mode of
convergence is induced by a topology only in rare cases, however it is often
induced by a filter convergence structure. Order convergence has always
been an important tool in studying vector lattices, along with some other
modes of convergence induced by the algebraic and order structure of a
vector lattice. In this talk I will present an explicit characterization of order
convergence in various spaces of real-valued continuous functions including
C(X), Cb(X) and others.
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On questions of PS Alexandrov, A weakly infinite-dimensional
Compactum not having Property C

Mathematics Subject Classification (MSC): 54F54

Abstract. We construct a compact subspace X of the Hilbert space Iω

such that X is not a C-space and X is weakly infinite-dimensional. In
fact, dimwX = ω0 where dimw is the transfinite extension of the covering
dimension for weakly infinite-dimensional spaces in the sense of Smirnov,
[B1]. We answer the question stated in [A+G], whether the notions weakly
infinite dimensionality and property C coincide, in the negative.

The example also has implications for the open question on the product
theorem for weakly infinite-dimensional compact spaces. The space X ×X
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is strongly infinite-dimensional and so the product theorem is not valid for
weakly-infinite dimensional spaces even in the compact case.

In [F], V.V. Fedorchuk defined intermediate classes of weakly infinite-
dimensional spaces. The space X constructed is not 3-C. Therefore the
question of equivalence of m-C spaces is also answered sharp in the negative.

P.S. Alexandroff noted that for finite dimensional spaces homological
dimension and covering dimension coincide. However A.N. Dranishnikov
[D1] showed an infinite dimensional space have finite homological dimension.
S. Nowak proposed an alternative and conjectures the coincidence of stable
cohomological dimension and covering dimension. A.N. Dranishnikov [D2]
showed that if there is a counterexample of an infinite-dimensional space
having finite stable cohomological dimension it must be a weakly-infinite
dimensional compactum not having property C. Can we provide an example
of an infinite dimensional space with finite stable cohomological dimension
using these new techniques?
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On τ -metrizable, projectively τ -metrizable and almost
τ -metrizable topological groups

Mathematics Subject Classification (MSC): 54C05, 54C10, 54C20

Abstract. Let R+ = [0,∞),R = (−∞,∞) and τ an infinite cardinal
number. Let Rτ

+ and Rτ denote the Tichonoff product τ -pieces of copies of
the spaces R+ and R corresponding to the natural topology.

Let X be a non-empty set. The mapping ρτ : X ×X → Rτ
+ is called the

τ -metric on X and the metric Rτ to Rτ
+.

Theorem 1. A topological group is G -metrizable if and only if the
inequalities χ(G) ≤ τ hold.

Theorem 2. τ - metrizable groups and only they are limits of the pro-
jective length τ , consisting of metrizable topological groups and continuous
homeomorphisms.

Theorem 3. For a topological group G the following conditions are
equivalent:

(1) The topological group G is projectively τ -metrizable;

(2) The topological group G is the limit of the projective spectrum
S = {Ga, f

β
α ,M} composed of τ -metrizable topological groups G and

open and perfect homomorphisms fβα : α, β ∈M .

Theorem 4. The following conditions are equivalent:

(1) The topological group G is almost τ -metrizable;

(2) The topological group G has a compact subgroup H with character
χ(H,G) ≤ τ . G/H is factor space and the natural mapping f : G →
G/H is open and perfect.

Theorem 5. The factor-space G/H of an almost τ -metrizable group G
with respect to the closed subgroup H is an almost τ -metrizable space.
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Theorem 6. If K is a compact group on the space X, that the orbit
spaceX/K is τ -metrizable, then in any neighborhood of the unit of the group
K there is a normal divisor N , the orbit space X/N is also τ -metrizable.
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Construction of the set of all (µ)-paracompact and close to them
extensions by uniform structures

Mathematics Subject Classification (MSC): 54E15

Abstract. It is well known that every (µ)-paracompact space is (µ)-comple-
te with respect to its universal uniformity UX , and the system of all open
covers of the space X forms the base of universal uniformity UX [1], [2]. If Y
is a dense subspace of the space X, and V is the uniformity on Y induced
by the uniformity U , then the space (X,U) is the (µ)-completion of the
uniform space (Y, V ). Thus, generally speaking, V is not a universal uni-
formity, but has a special feature which we call as (µ)-preparacompactness.
It turns out that by (µ)-preparacompact uniform structures of space Y one
can construct all his (µ)-paracompact extensions namely, to obtain these
extensions as (µ)-completions of space Y on (µ)-preparacompact uniform
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structures. Therefore, the construction of paracompact and related exten-
sions of the Tychonoff space by uniform structures is, in our opinion, the
most convenient and natural.

In this work the set of all compact, superparacompact, strongly para-
compact, paracompact and µ-paracompact extensions of a Tychonoff space
with the help of his uniform structures has been constructed.
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Polyhedral joins and graph complexes

Mathematics Subject Classification (MSC): 05E45, 55P10, 55P15,
05C76

Abstract. Given two graphs G and H one can define their lexicographic
product G◦H as the graph obtained by taking a copy of H for each vertex of
G and adding all the possible edges between two copies if the corresponding
vertices are adjacent in G. This construction seems natural and one can ask
for analogous constructions for simplicial complexes.

Given a simplicial complex K with vertex set {1, . . . , n} and a family of
pairs of CW-complexes {(Xi, Ai) : 1 6 i 6 n}, we define the polyhedral join

of the family as the union over the simplices σ of
∗
D (σ) = ∗ni=1 Yi, where

Yi =

{
Xi if i ∈ σ
Ai if i /∈ σ
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This space not only generalizes the lexicographic product, but its homo-
topy type is needed for calulating the honmotopy type of a family of graph
complexes associated to G ◦H.

Given a graph G and any d ∈ N∪{∞}, we associate a simplicial complex
Fd(G) whose vertices are the same as those of G and where a subset S is
a simplex if the induced subgraph on S is a forrest with maximal degree at
most d (for d =∞ all degrees are allowed).

In this talk I will give some general results about polyhedral joins and
explain how this is used to calculate the homotopy type of the complexes
Fd(G ◦H) for some graph families.
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On topological properties of partial metric spaces and applications
to fixed point theory

Mathematics Subject Classification (MSC): 54E35, 54D30, 54E50,
54H25

Abstract. The notion of a partial metric space was introduced by Matthews
[4] who showed, roughly speaking, how metric–like tools can be extended to
non–Hausdorff topologies. He also indicated that this class of spaces plays
an important role in the study of denotational semantics of a programming
language.

In this talk we are going to present some necessary and sufficient condi-
tions under which the topology generated by a partial metric is equivalent
to the topology generated by a suitably defined metric. Next, we are going
to focus on two basic topological properties of partial metric spaces, namely
completeness and compactness. In particular, it appears that in these spaces
compactness is equivalent to sequential compactness. Moreover, Hausdorff
compact partial metric spaces are metrizable.
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Finally, we will focus on some new extensions of the Generalized Banach
Contraction Principle (see e.g. [1]) in this class of spaces. We will also
discuss the significance of bottom sets of partial metric spaces in fixed point
theorems for mappings acting in these spaces.

The results presented in this talk come from the papers [2] and [3].
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Some notes on induced functions on hyperspaces

Mathematics Subject Classification (MSC): 54B20, 54C05, 54C35

Abstract. Let X be a topological space and CL(X) be the hyperspace of all
nonempty closed subsets of X. A continuous function f : X → Y between
topological spaces induces a function between the hyperspaces CL(X) and
CL(Y ), defined by

A 7→ f (A).
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The problem of wether the induced function is also continuous has been
studied and solved when CL(X) and CL(Y ) are endowed with the Vietoris
topology or the Hausdorff metric topology.

In this talk we will discuss the continuity of the induced function with
respect to the Attouch-Wets metric topology and the Fell topology. We will
give a characterization of its continuity when CL(X) and CL(Y ) are endowed
with the Attouch-Wets metric topology. Regarding the Fell topology, we will
characterize its continuity in the case when f : X → Y is closed.
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Plat closure for links in Dunwoody and Takahashi manifolds

Mathematics Subject Classification (MSC): 57K10, 57K30

Abstract. Dunwoody and Takahashi manifolds are two intensively studied
families of closed connected orientable 3-manifolds. The fist one was intro-
duced by Dunwoody in [2] using Heegaard diagrams and generalized in [1];
the second one arose in [4] by means of Dehn surgery and was generalized in
[3]. In this talk, after recalling some properties of Dunwoody and Takahashi
manifolds, I’ll present some new result, obtained in collaboration with Paolo
Cavicchioli, on the equivalence moves for links, represented via plat closure,
lying in these two families.
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An algorithmic method to compute plat-like Markov moves in
genus two 3-manifolds

Mathematics Subject Classification (MSC): 57K10, 57M15, 57-04,
05C99

Abstract. This dissertation will deal with the equivalence of links in 3-
manifolds of Heegaard genus two. We construct an algorithm (implemented
in C++) which, starting from a description of such a manifold introduced by
Casali and Grasselli that uses 6-tuples of integers and determines a Hee-
gaard decomposition of the manifold, allows to find the words in B2,2n, the
braid group on 2n strands of a surface of genus two, that realize the plat-
equivalence for links in that manifold. In this way we extend the result
obtained by Cattabriga and Gabrovšek for 3-manifolds of Heegaard genus
one to the case of genus two. We describe explicitly the words for a notable
family of 3-manifolds.
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On π-compatible topologies

Mathematics Subject Classification (MSC): Primary 54A10,
54D10, 54D15

Abstract. Let X be a non-empty set, P(X) the family of all subsets of
X, τ a topology on X and Im(X, τ) the family of all meager sets of the
topological space (X, τ).

An interesting collection of subsets of X extending τ as well as Im(X, τ),
is the family Bp(X, τ) of all subsets of X possessing the Baire property in
(X, τ). A subset A of X has the Baire property in the space (X, τ) if
A = (O \M)∪N , where O ∈ τ and M,N ∈ Im(X, τ). It is well known that
the family Bp(X, τ) is a σ-algebra of sets.

Let us recall that for the real numbers R with the Euclidean topology τE
we have Bp(R, τE) 6= P(R), and there is a lot of information about elements
of the family P(R) \ Bp(R, τE). It would be interesting to know for what
topologies τ on R the equality Bp(R, τ) = Bp(R, τE) is valid.

One can even pose a general question.

Question. Let X be a set and τ be a topology on X. For what topologies
σ on the set X does the equality Bp(X, τ) = Bp(X, σ) hold?

The π-compatibility of topologies σ and τ on a set X introduced in [CN1]
implies Im(X, τ) = Im(X, σ) and Bp(X, τ) = Bp(X, σ) but it is not equiva-
lent to the equalities. It turns out that a stronger version of π-compatibility
between two topologies, the notion of the admissible extension (see [CN2]),
was implicitly occurred in literature several times. I discuss some new facts
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about these relations between topologies which will be valid for the men-
tioned cases.
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Self-homotopy invariants with spheres

Mathematics Subject Classification (MSC): Primary 55P10,
55Q05, 55Q20

Abstract. We introduce the self-homotopy invariants, such as the self-
closeness number and the self-length. We focus on computing the self-
closeness numbers and self-lengths of the product and wedge of two spheres.
The self-closeness number is the minimum number NE(X) such that An] (X)
= E(X), where An] (X) consists of homotopy classes of self-map of X that
induce an automorphism from πi(X) to πi(X) for i = 0, 1, · · ·, n. The self-
length LE(X) is the number of strict inclusions of the monoid chain on An] (X)
for all k ≥ 0.
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Gem-induced trisections of PL 4-manifolds

Mathematics Subject Classification (MSC): 57Q15, 57K40, 57M15

Abstract. According to Gay and Kirby ([1]) a trisection of a smooth, ori-
ented, closed 4-manifold M is a decomposition of M into three 4-dimensional
handlebodies, with disjoint interiors, mutually intersecting in 3-dimensional
handlebodies, so that the intersection of the three “pieces” is a closed ori-
entable surface. The minimum genus of the intersecting surface is called the
trisection genus of M.

In [2] Spreer and Tillmann computed the trisection genus of standard
simply-connected PL 4-manifolds, via their representation by simple cry-
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stallizations, i.e. edge-colored graphs dual to triangulations whose 1-skeleton
coincides with that of a 4-simplex.

In this talk we propose generalizations of Spreer and Tillmann’s work by
presenting and analyzing gem-induced trisections, i.e. trisections that are
induced by any edge-colored graph representing a compact PL 4-manifold
with empty or connected boundary. In particular, we prove that the graph-
defined PL invariant regular genus provides an upper bound for the value of
the trisection genus.

We also present some results about the possible minimality of the genus
of a gem-induced trisection. As a consequence, we are able to general-
ize Spreer and Tillmann’s result by determining a wider class of closed
simply-connected PL 4-manifolds whose trisection genus is realized by a
gem-induced trisection and coincides with the second Betti number and also
with half the value of the regular genus.

Moreover, in case of a compact PL 4-manifold admitting a handle de-
composition with no 3-handles, we give an estimation of the trisection genus
in terms of a surgery description ([3],[4]).
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Higher topological complexity of Seifert fibered manifolds

Mathematics Subject Classification (MSC): 55M30, 57N65, 55S99,
55P99

Abstract. We improve the cohomological lower bound for higher topo-
logical complexity by describing higher topological complexity weights for
cohomology classes. As an application, we show that in many cases the
higher nth topological complexity of the Seifert fibered manifold is either 3n
or 3n+ 1.
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An algorithm focused on determining the best parameterization
tool for uncertain environments based on decision making

Mathematics Subject Classification (MSC): 03E75, 90B50, 91B06

Abstract. Decision-making problem in an uncertain environment is found
prime importance in current periods of time. Innovative methods based on
soft set theory with applications in many fields of the daily life of uncertain
environments have already been developed and proposed. In this paper, we
find out the best possible parameter from the given fixed set of parameters
in any soft sets over the universe U , which is given for the solution of an
uncertainty problem. Moreover, we construct an algorithm, which proceeds
toward an application for a type of uncertainty problem. The paragon out-
come is achieved in the scope of group work to compute the success value of
the group. We hope that this research for the selection of the best possible
parameter of a universal set in any soft set will be worthwhile to researchers
working on problems having uncertainty in many features for further studies
in this field.
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On the fixed-point property of p-convex compacta

Abstract. Recently an analytic proof of the so-called Schauder Conjecture
has been claimed. The argument involves p-convexity, 0 < p < 1. The
claimed proof will be scrutinized.
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Macroscopic dimension conjecture for RAAG

Abstract. The Gromov’s macroscopic dimension conjecture states that the
macroscopic dimension of the universal cover X of a closed n-manifold M
with a positive scalar curvature metric does not exceed n − 2. We prove a
strong version of Gromov’s conjecture for spin manifolds whose fundamental
group is a right-angled Artin group (RAAG).
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On classes of frames containing J-frames

Mathematics Subject Classification (MSC): 06D22

Abstract. J-frames are a pointfree enunciation of Michael’s J-spaces ([3]).
In this talk, we present a study of classes of frames satisfying conditions
which are weaker (and some which are stronger) than those defining J-frames
and establish conditions under which these frames are J-frames. Mimicking
the defining conditions of a J-frame, modulo replacing “compact” with “con-
nected”, we define a class of CJ-frames. This class contains all connected
frames. After showing that a J-frame has no points if and only if it is con-
nected, we shall infer that all non-spatial J-frames are CJ-frames. A char-
acterisation of J-frames via their pointfree remainders in some well-known
extensions will be discussed. All metrizable regular continuous J-frames are
separable (à la [1, 2]); a sketch of a proof for this will be discussed.
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Infinite Horizon Random FBSDEs and Stationary Stochastic
Viscosity Solutions

Mathematics Subject Classification (MSC): Primary 60H15;
Secondary 35R60, 60H25

Abstract. Stimulated by various continuous time future expectations mod-
els with random coefficients from economic theory, we study a class of infi-
nite horizon fully coupled forward-backward stochastic differential equations
(FBSDEs). Under standard Lipschitz and monotonicity conditions, and by
means of the contraction mapping principle, we establish existence, unique-
ness, a comparison property and dependence on a parameter of adapted
solutions. Making further the connection with infinite horizon quasilinear
backward stochastic partial differential equations (BSPDEs) via a gener-
alization of the well known four-step-scheme, we are led to the notion of
stochastic viscosity solutions. Given additional stationary conditions on the
coefficients of the FBSDEs system, this stochastic viscosity solution becomes
stationary as well.
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There is No Standard Model of ZFC and ZFC2 with Henkin se-
mantics. Generalized Lob’s Theorem. Strong Reflection Principles
and Large Cardinal Axioms. Consistency Results in Topology

Mathematics Subject Classification (MSC): 03C25; 03C30

Abstract. In this article we proved so-called strong reflection principles
corresponding to formal theories Th which has omega-models. A possible
generalization of the Lob’s theorem is considered. Main results is: (1) let k
be an inaccessible cardinal, then ¬Con(ZFC + ∃k), (2) there is a Lindelöf
T3 indestructible space of pseudocharacter ℵ1 and size ℵ2 in L.
https://arxiv.org/abs/1301.5340
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Contemporary Phase Space Methods applied on Magnetohydro-
dynamic flow data

Abstract. In this study we apply the modern method of Recurrence Plots
(RP) and the recently proposed Visual Boundary Recurrence Plots (VBRP)
method on magnetohydrodynamic flow data. Recurrence Plots is a graph-
ical tool based on phase space topology. Recurrence Plots are constructed
by calculating Euclidian distances between vectors. Visual Boundary Recur-
rence Plot visualizes each point of the recurrence plot with colors depending
on whether the neighboring points are recurrent or not, concentrating on
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vertical and horizontal directions studying the stability of the textures of
the recurrence plots. RPs and VBRPs applied on magnetohydrodynamic
(MHD) turbulent channel flow data (velocity timeseries). From the RP
results we extracted valuable information about the dynamics of the two
different systems. However, the application of the VBRP method gave us
the advantage to identify additional correlations of two systems inside. Fi-
nally, we introduced a metric distance among two VBRPs that allow us to
discuss their topological closeness.
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On typical behaviour of projections of a compact set in RN

Mathematics Subject Classification (MSC): 54E52, 54F45, 57N35

Abstract. We apply ideas of geometric measure theory and Baire cate-
gory theory to topological problems, namely, to topological embeddings of
compact sets into Euclidean space.

In 1947, Borsuk constructed a Cantor set in RN , N ≥ 3, such that its
projection onto any (N − 1)-plane contains an (N − 1)-dimensional ball.
This can be strengthened: a desired Cantor set can be obtained from an
arbitrary Cantor set by an arbitrarily small isotopy of the ambient space
RN .

As a corollary, Borsuk obtained a simple arc in RN , N ≥ 3, whose
orthogonal projection onto any (N−1)-plane contains an (N−1)-dimensional
ball. This can also be done for knots, i.e. for embeddings of the circle S1 into
RN . Borsuk’s work combined with known results on Cantor sets implies: a
compactum with (N − 1)-dimensional projections can be obtained from an
arbitrary uncountable compactum X ⊂ RN by an arbitrarily small isotopy
of the space RN .

61



The question arises: how do the dimensions of the projections of a com-
pact set X ⊂ RN behave under a typical ambient isotopy or under a typical
ambient homeomorphism? (Typical in the sense of the Baire category.)

We solve this problem. Our main result strengthens Väisälä’s theorem
(1979) connecting Hausdorff dimension and Shtan’ko embedding dimension
(denoted by “dem”). In its turn, Väisälä’s theorem extends results of Nöbel-
ing (1931) and Szpilrajn (1937) on relationship between Hausdorff dimension
and topological dimension.

As a consequence, we find out how the projections of a knot in R3 “typi-
cally” behave. Recall that a typical knot in R3 is wild (J. Milnor, 1964) and
even wild in every point (H.-G. Bothe, 1966).

As another consequence, we get new criteria of tameness and wildness of
a Cantor set in RN in terms of its projections.
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Local completeness of Ck(X)

Mathematics Subject Classification (MSC): 46A03, 54C35

Abstract. Locally complete spaces form a significant and widely studied
class of locally convex spaces, and the problem to find a characterization
of locally complete spaces among important classes of locally convex spaces
arises naturally.

For a Tychonoff space X, we denote by Ck(X) the space C(X) of all real-
valued continuous functions on X endowed with the compact-open topology.
Then the problem can be formulated as follows:

Problem 1.1. Characterize Tychonoff spaces X for which the space Ck(X)
is locally complete.

For the important partial cases when X is a pseudocompact space, the
answer to Problem 1.1 was obtained by Warner [2]:

Theorem 1.2 ([2]). For a pseudocompact space X the following asser-
tions are equivalent: (i) Ck(X) is locally complete, (ii) Ck(X) is sequentially
complete, (iii) X is Warner bounded.

Since 1958 only a simplification of the original proof of Warner was ob-
tained, see Theorem 2.13 in [1]. We propose a complete solution of Problem
1.1 by proving the following theorem:

Theorem 1.3. For a Tychonoff space X the following assertions are equiv-
alent:
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(i) every strongly functionally compact-finite sequence of functionally clo-
sed subsets of X is locally finite;

(ii) X is a sequentially Ascoli space;

(iii) Ck(X) is locally complete.

If the space X is pseudocompact we also extend the classical Warner’s
Theorem 1.2.
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A characterization of proper morphisms by the lifting property

Mathematics Subject Classification (MSC): 18B30, 54B30, 54C10,
54C20, 54D30, 54D10

Abstract. It was probably in the 1950’s when factorization systems ap-
peared for first time. Isbell [2] already used the concept of lifting prop-
erty, but it was not until 1967 that Quillen [1] gave the formal definition of
this property to introduce model categories. Since then the lifting property
has had a prominent role in category theory, but also in different areas of
topology such as homotopy theory, covering spaces, extensions of continuous
functions and others.
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Recently Gavrilovich [3] characterized some classical properties and con-
cepts in terms of lifting properties; for example, compactness, connecte-
ness, dense image, discrete spaces, induced topology, separation axioms and
proper maps. In particular, proper maps with domain and codomain T4
were charaterized as those maps in (({a} −→ {a ↘ b})r<5)

lr (that is, the
map has the right lifting property with respect to the class of morphism
that have the left lifting property with respect to those that have the right
lifting property with respect to the inclusion of the point that is open in
Sierpinski’s space, and have domain and codomain of cardinality less than
5). In the same article the author proposed the following conjecture:

Conjecture 1. In the category of topological spaces (({a} −→ {a↘ b})r<5)
lr

is the class of proper maps.

We give a characterization of proper maps with regular domain by means
of a lifting property [4]. This partially answers the conjecture above.
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Beyond the Volume Conjecture

Abstract. Quantum Topology is a recent area of research that originated
with V. Jones’s discoverty of the Jones polynomial of a knot. Witten re-
formulated this topological invariant in terms of quantum field theory, and
Kashaev in 1995 made a startling conjecture relating the Jones polynomial
of a knot and its parallels to Thurston’s 3-dimensional Hyperbolic Geometry.
This Volume Conjecture is currently proven only for a handful of knots (less
than 10), and tested experimentally for many more. The talk will survery
the volume conjecture and its exponentially small refinements. Joint work
with Don Zagier.
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Shimane University, Matsue, Shimane, 690-8504, Japan
e-mail: hattori@riko.shimane-u.ac.jp

Zero-Dimensional Extensions of Topologies

Mathematics Subject Classification (MSC): 54F45, 54A05, 54A10

Abstract. Undoubtedly, Topological Dimension Theory contains many im-
portant chapters, including the studies of different notions of dimensions
such as the small inductive dimension and the covering dimension. In this
paper, we extend such studies. Given a topological space (X, τ), we in-
troduce the notions of zero-dimensional extensions of τ with respect to the
small inductive dimension ind and the covering dimension dim. Based on
these meanings, new cardinal invariants are inserted, the so-called zero-
dimensional structural numbers with respect to ind and dim, succeeding to
present the topology τ as an intersection of zero-dimensional extensions of
it. We study properties of these invariants and their “behavior” in different
classes of topological spaces.
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The notion of convergence on τ -metric spaces

Mathematics Subject Classification (MSC): 54A20, 40A35, 40A05

Abstract. In this paper we study the notion of convergence on τ -metric
spaces, investigating new results and properties. Moreover, we study the
meanings of statistical and ideal convergences on this class of spaces, in-
vestigating also their behavior under the view of the classical notions of
convergence, statistical convergence and ideal convergence on the usual en-
vironment of metric spaces.
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An extension of covering dimension for continuous mappings

Mathematics Subject Classification (MSC): 54F45

Abstract. In Dimension Theory, there are “mapping theorems” estab-
lishing relationships between the dimensions of the domain and range of a
continuous mapping ([AN], [C], [E], [P]). Most of the theorems deal with
mappings that satisfy additional conditions such as being closed mappings.
For a given continuous mapping f : X → Y , the dimension of f is usually
defined as follows:

dim f = sup{dim(f−1(y)) : y ∈ f(X)}.

In this talk we introduce and investigate a different notion of cover-
ing dimension for continuous mappings between topological spaces, which
is closer to the classical definition of the Lebesgue covering dimension of a
space. This notion leads to the definition of new interesting classes of con-
tinuous mappings. We also discuss results concerning continuous mappings
between metric spaces.
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On the notion of convergence of a function along an ideal

Mathematics Subject Classification (MSC): 54A20

Abstract. The concept of convergence of a function along an ideal, alias
I-convergence, is the dual concept of convergence of a function along a fil-
ter, introduced by H. Cartan. In this paper, we seek to treat this notion as
a primitive notion of convergence and examine the conditions that make it
possible to recognize whether this type of convergence is topological. Specif-
ically, we consider a non-empty set X and a class C consisting of triples of
the form (f, x, I), where f is a function with domain D and values in X, I
is a proper ideal on D and x ∈ X, and provide a set of axioms of conver-
gence, on the class C, which prove to be necessary and sufficient to ensure
the existence of a unique topology τ on X subject to the following condition:
(f, x, I) ∈ C if and only if f I-converges to x, relative to the topology τ .
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Bi-equivariant extension of continuous maps

Mathematics Subject Classification (MSC): 54H15, 20M20

Abstract. Let X be a topological space and let G be an arbitrary topo-
logical group. A binary action of group G on X is a continuous map
α : G×X2 → X such that

α(gh, x1, x2) = α(g, x1, α(h, x1, x2)), α(e, x1, x2) = x2,

or

gh(x1, x2) = g(x1, h(x1, x2)), e(x1, x2) = x2

for all g, h ∈ G and x1, x2 ∈ X, where e is the identity of G.
By a topological binary transformation group or binary G-space we mean

a triple (G,X, α), where α is a binary action of group G on X.
A continuous map f : X → Y between binary G-spaces (G,X, α) and

(G, Y, β) is called a bi-equivariant map provided

f(α(g, x1, x2)) = β(g, f(x1), f(x2))

or

f(g(x1, x2)) = g(f(x1), f(x2))

for all g ∈ G and x1, x2 ∈ X.
A subset B of a binary G-space X is called bi-invariant if G(B,B) = B.

A minimal bi-invariant subset Ã ⊂ X which contains a set A ⊂ X is called
the bi-invariant extension of A.

For any subset A of X, let us recursively define the sets An, n = 1, 2, . . . ,
as follows:

A1 = G(A,A), A2 = G(A1, A1), . . . , An = G(An−1, An−1), . . .
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We denote an element x = g1(a1, a2) ∈ A1 by [g1; a1, a2]. An element x ∈ A2

which has a form x = g1(g2(a1, a2), g3(a3, a4)) is denoted by

[g1, g2, g3; a1, a2, a3, a4].

Similarly, any element x ∈ An is defined by a collection of some elements
g1, . . . g2n−1 ∈ G and a1, . . . , a2n ∈ A: x = [g1, . . . , g2n−1; a1, . . . , a2n ].

Now let X and Y be binary G-spaces and let A be a subset of X. We
say that a continuous map f : A→ Y is a structural map if

[g1, . . . , g2n−1; a1, . . . , a2n ] = [g′1, . . . , g
′
2m−1; a

′
1, . . . , a

′
2m ],

implies

[g1, . . . , g2n−1; f(a1), . . . , f(a2n)] = [g′1, . . . , g
′
2m−1; f(a′1), . . . , f(a′2m)].

where g1, . . . g2n−1, g
′
1, . . . g

′
2m−1 ∈ G, a1, . . . , a2n , a

′
1, . . . , a

′
2m ∈ A, n,m ∈ N .

A binary G-space X is called distributive if

g(h(x, x1), h(x, x2)) = h(x, g(x1, x2))

for any x, x1, x2 ∈ X and g, h ∈ G.

Theorem 1. Let X and Y be distributive binary G-spaces and let A be a
closed subset of X. Then every continuous structural map f : A → Y can
be extended uniquely to a continuous bi-equivariant map f̃ : Ã→ Y where
Ã ⊂ X is the bi-invariant extension of A.

For a distributive binary G-space X we can define the orbit space X|G
and a continuous section σ : X|G→ X of the orbit projection π : X → X|G.
The image of a section σ : X|G→ X is closed in X. Every closed subset of
X touching each orbit in exactly one point defines a continuous section of
π : X → X|G. Because of this, we will use the term ”section” for the closed
set which is the image of a section σ : X|G→ X.

Theorem 2. Let G be a compact topological group, X and Y distributive
binary G-spaces, and A a section of the orbit projection π : X → X|G.
Suppose f : A→ Y is a continuous map such that

g(a, a) = h(k(a′, a′), s(a′′, a′′))
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implies
g(f(a), f(a)) = h(k(f(a′), f(a′)), s(f(a′′), f(a′′)))

where a, a′, a′′ ∈ A and g, h, k, s ∈ G. Then f has a unique continuous
bi-equivariant extension f̃ : X → Y .
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Entropy and Cardinality of the Rational Numbers

Mathematics Subject Classification (MSC): 53Z05, 82B10, 58A05,
26A03, 03E25, 03E10

Abstract. In this article, we will discuss the cardinality of rational num-
bers. We will elaborate a comparison between two approaches used to find
the cardinalities of finite dimensional Cartezian products of the set of pos-
itive integers. In the first approach, used in continuum hypothesis, such
products are considered to be countable. In the second approach, used in
statistical mechanics, such products have a greater cardinality than the set
of positive integers. The later agrees with experiments and is consistent with
the foundations of topology and differential geometry. We will demonstrate
that the set of rational numbers need not to be countable. This article im-
plies that the axiom of choice can be a better technique to prove theorems
that use second-countability. This is important for the mathematical foun-
dation of quantum statistical mechanics, metrization theorems and physics
of spacetime.
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Affine Connections in Quantum Gravity and New Fields

Mathematics Subject Classification (MSC): 53B50, 83C45, 83F05,
57R30, 83D05

Abstract. In this article, we will discuss the possibility of using affine
connections to explain inflation and dark energy. We have previously in-
troduced two massless scalar fields using connections more general than the
Levi-Civita connections in the Einstein-Palatini action. In this article, we
will develop a scheme to add suitable potential terms for these fields. We will
construct a Lagrangian formalism to include these scalar fields in a theory of
gravity coupled with ordinary matter and radiation. These fields need not
to be present in the Lagrangians of gauge theories with conserved fermionic
currents. The same remains valid for scalar fields. We will discuss a gen-
eralization of this aspect. A careful application of the Stokes’s theorem in
curved spacetime reveals that we need to introduce the right-handed neutri-
nos in the electroweak theory in curved spacetime even with the Levi-Civita
connections. This is required to have conserved vector currents for the neu-
trinos and can be important for dark matter research. The above mentioned
scalars contribute positive and negative stress tensors to Einstein’s equation
and can be useful to explain inflation and dark energy. We will discuss a
model that can have an additional massless scalar field. We will discuss
the possibility of introducing higher spin fields using second rank symmetric
traceless tensors. We will also discuss the corresponding little group analysis
in flat spacetime. We will show that we can use massless (A,A) type fields
in Minkowski space to introduce massless integer spin particles.
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On some weakenings of the Hausdorff and the Urysohn separation
axioms and new related cardinal functions

Mathematics Subject Classification (MSC): 54A25, 54D10, 54D20,
03E99

Abstract. The Hausdorff number H(X) of a topological space X (see [1]) is
the least cardinal number κ such that for every subset A ⊆ X with |A| ≥ κ
there exists an open neighbourhood Ua for every a ∈ A such that

⋂
a∈A Ua =

∅. A space X is said to be n-Hausdorff if H(X) ≤ n. In an analogous way
is possible to define also the Urysohn number and the class of n-Urysohn
spaces (see [2],[3]). In [4] we present two new cardinal functions defined in the
class of n-Hausdorff and n-Urysohn spaces that extend pseudocharacter and
closed pseudocharacter respectively and some bounds on the cardinality of n-
Hausdorff and n-Urysohn spaces that represent variations of known results.
Moreover, some properties in the class of n-Urysohn n-H-closed spaces are
given.

A joint work with M. Bonanzinga, N. Carlson
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On dense sets of products of separable spaces

Mathematics Subject Classification (MSC): 54B10

Abstract. The classical Hewitt - Marczewski - Pondiczery theorem states
that if d(Xs) 6 τ (ω 6 τ) for every s ∈ S and |S| 6 2τ then

d(
∏
s∈S

Xs) 6 τ.

We consider the problem of the existence of a dense set of a cardinality
ω in the product

∏
s∈S

Xs for τ = ω which contains no convergent nontrivial

sequences.
For τ = ω the existence of such set were proved for Ic (W.H. Priestly,

1970), for Dc, where D is the two point discrete space (P. Simon, 1978), for
Zc, where Z is separable not single point T1-space (A. Gryzlov, 2018), for a
product of 2c separable decomposable spaces, i.e. spaces, which contain two
not empty closed disjoint sets (A. Gryzlov, 2020).

We prove the following.
Such set exist in the product of 2ω many separable spaces, which contain

a simple sequence, that has no limit.
We say that a sequence λ is simple, if for every xn ∈ λ the set {n′ ∈ ω :

xn = x′n} if finite.

Acknowledgements: This work carried within the framework of state as-
sigment of Ministry of Science and Higher Education of Russia(FEWS-2020-
0009).
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Topological and combinatorial characterizations of normal
3-pseudomanifolds with g2 ≤ 5

Mathematics Subject Classification (MSC): Primary 05E45;
Secondary 05C30, 57Q15, 57Q25

Abstract. In recent years, characterizing normal pseudomanifolds with re-
spect to small g2 has become a very popular topic. For normal 3-pseudomani-
folds with g2 ≤ 3 and 3-manifolds with g2 ≤ 9, the topological and com-
binatorial characterizations are known. In this talk, we characterize nor-
mal 3-pseudomanifolds with g2 ≤ 5. First, we show that a normal 3-
pseudomanifold with g2 ≤ 5 has no more than two singular vertices. Then,
we show that a normal 3-pseudomanifold K with g2 ≤ 5 is obtained from
some boundary complex of 4-simplices by a sequence of possible operations
of types connected sum, bistellar 1-move, edge contraction, edge expansion,
and an edge folding. As a result, K is a triangulation of either a sphere or
a suspension of RP2.
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Functional countability in LOTS

Mathematics Subject Classification (MSC): Primary 54F05;
Secondary 06A05, 54A35, 54C30

Abstract. A topological space X is called functionally countable if f [X] is
countable for any continuous function f : X → R. The diagonal of a space
X is the subset ∆X = {〈x, x〉 : x ∈ X} of X × X. In [2] a 2021 paper,
Vladimir Tkachuk studied spaces X such that (X ×X) \∆X is functionally
countable, in this paper Tkachuk asked the following:

Suppose that X is a linearly ordered space and (X × X) \ ∆X is func-
tionally countable. Must be X separable?

In this talk we focus our attention in this question and we show that
if X is an uncountable linearly ordered space such that (X × X) \ ∆X is
functionally countable, then X must be an Aronszajn line. This result was
proved in [1].
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Several types of Jordan curve theorems in an applied topological
setting

Mathematics Subject Classification (MSC): 54A05, 54D10, 54F05,
54C08, 54C10, 54F65

Abstract. This talk refers to several types of Jordan curve theorems in
an applied topological setting. With an Alexandroff topological structure, a
Marcus-Wyse topological structure, an H-topological structure, a Khalim-
sky topological structure, and so on, we can establish the corresponding Jor-
dan curve theorem. Since each of them has its own feature, depending on the
situation, the usuage of it can be considered. In particular, the present talk
mainly deals with the semi-Jordan curve theorem on the MW -topological
plane and refers to some applications into the field of applied topology such
as digital topology, mathematical morphology as well as computer science.
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Quasicontinuity, measurability and the topology of uniform con-
vergence on compacta

Mathematics Subject Classification (MSC): 54C08, 26A21, 54A25

Abstract. The notion of quasicontinuity is a classical one. It has found
many applications in the study of topological groups, in the study of conti-
nuity points of separately continuous mappings and in characterizations of
minimal usco and minimal cusco maps [1].

The aim of the talk is to present some recent results on quasi-continuous
mappings. Among other results we will mention the following ones. There
are 2c real quasicontinuous non-Lebesgue measurable functions defined on
the interval [0, 1] [4]. Let X be an uncountable Polish space. Then there
are 2c real quasi-continuous non Borel measurable functions on X [5]. The
density of the space of quasicontinuous mappings from R to R equipped with
the topology of uniform convergence on compacta is 2c [2].
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Factorization of maps, large cardinals and Gδ-covers

Mathematics Subject Classification (MSC): 54D80, 03E55

Abstract.
Theorem Let C be an epireflective class in TopT (or in UnifH) generated by
a space A of Ulam non-measurable cardinality. Then every continuous (or
uniformly continuous, resp.) map into A from a limit of an inverse system
in C strongly factorizes via a subsystem of cardinality less than s1.

If C contains a countable discrete space (or a countable finest precompact
discrete uniform space, resp.) then the bound s1 cannot be decreased.

By s1 the first ω1-strongly compact cardinal is denoted. It is shown that
existence of the factorization is in a close connection with Gδ-covers and
that the needed covers exist for cardinals less than s1 and do not exist under
the condition mentioned in Theorem. The result is proved for a general case
of any measurable cardinal and µ-strongly compact cardinal numbers.
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Product of spaces, dimension and universality

Abstract. There are many papers, concerning the logarithmic law for the
dimension of the product of spaces. In particular, examples of spaces, for
which the logarithmic law is not true for its products, were constructed. We
mension here some of them. First such spaces were given by L. Pontrya-
gin. He construct two metric compact spases X and Y for which dim(X) =
dim(Y ) = 2 and dim(X×Y ) = 3. On the other hand V. Filippov (1971) con-
struct two (non-metrizable) compact spaces X and Y for which Ind(X) =
ind(X) = 1, Ind(Y ) = ind(Y ) = 2 and Ind(X × Y ) ≥ ind(X × Y ) > 3.
Later, A. Karassev and K. Kozlov (2015) (using a result of B. Pasynkov
(1988)) proved that for these spaces we have Ind(X×Y ) = ind(X×Y ) = 4.
Many examples of compact metric spaces, for which the logarithmic law is
not true, are given by A. Dranishnikov (1988). He proved that for each
natural numbers n ≤ m and each r : n < r ≤ m + n, there are compact
metric spaces Xn and Xm such that dim(Xn) = n, dim(Xm) = m and
dim(Xn ×Xm) = r.

The following propositions are corollaries of the given below main theorem.

Proposition 1. For each separable metrizable space Y and each countable
ordinals α and β in the non-empty class of all separable metrizable spaces
X, for which ind(X) = α and ind(Y × X) = β, there exists a universal
element.

Proposition 2. For each (completely) regular space Y of weight ≤ τ and
each ordinals α and β in the non-empty class of all (completely) regular
spaces X of weight ≤ τ , for which ind(X) = α and ind(Y ×X) = β, there
exists a universal element.

84



Proposition 3. For each T0-space Y of weight ≤ τ and each ordinals α
and β in the non-empty class of all T0-spaces X of weight ≤ τ , for which
ind(X) = α and ind(Y ×X) = β, there exists a universal element.

(For many Y , α and β, the considered in these propositions classes of spaces,
may be empty.)

We note that although the Propositions 1− 3 have the similar formulations,
they are independent each other.

The main result is the following theorem.

Theorem. For each space Y of weight ≤ τ , each ordinals α and β and
each saturated class S of spaces of weight ≤ τ in the non-empty class of all
elements X ∈ S, for which ind(X) = α and ind(Y ×X) = β, there exists a
universal element.

The part concerning Theorem was supported by the interdisciplinary sci-
entific and educational school “Mathematical methods for the analysis of
complex systems” of Moscow State University.

Ingrid Mary Irmer

Southern University of Science and Technology, International Center for
Mathematics, Shenzhen, China

e-mail: ingridmary@sustech.edu.cn

Thurston’s mapping class group-equivariant deformation retrac-
tion of Teichmüller space

Abstract. Thurston constructed a mapping class group-equivariant defor-
mation retraction of the Teichmüller space of a closed, orientable surface.
This talk will survey his construction, as well as a dual construction due to
Schmutz, and discuss some consequences for the structure of moduli space.
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Descriptive complexity in number theory and dynamics

Mathematics Subject Classification (MSC): Primary 03E15;
Secondary 11K16, 37B10, 37E99

Abstract. Informally, a real number is normal in base b if in its b-ary
expansion, all digits and blocks of digits occur as often as one would expect
them to, uniformly at random. We will denote the set of numbers normal
in base b by N (b). Kechris asked several questions involving descriptive
complexity of sets of normal numbers. The first of these was resolved in 1994
when Ki and Linton proved that N (b) is Π0

3-complete. Further questions
were resolved by Becher, Heiber, and Slaman who showed that

⋂∞
b=2N (b)

is Π0
3-complete and that

⋃∞
b=2N (b) is Σ0

4-complete. Many of the techniques
used in these proofs can be used elsewhere. We will discuss recent results
where similar techniques were applied to solve a problem of Sharkovsky and
Sivak and a question of Kolyada, Misiurewicz, and Snoha. Furthermore,
we will discuss a recent result where the set of numbers that are continued
fraction normal, but not normal in any base b, was shown to be complete
at the expected level of D2(Π

0
3). An immediate corollary is that this set is

uncountable, a result (due to Vandehey) only known previously assuming
the generalized Riemann hypothesis.
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Quasi-Cauchy spaces and completion

Mathematics Subject Classification (MSC): 54A20, 54A40, 54E15,
54E35, 54E70

Abstract. Based on Cauchy pair filters, introduced by Lindgren and Fletch-
er [3] for studying completeness in quasi-uniform spaces [2], we develop an
axiomatic theory of non-symmetric Cauchy spaces that we call quasi-Cauchy
spaces. A quasi-Cauchy structure is a set of pair filters satisfying three
natural axioms. We study the categorical properties of the category of quasi-
Cauchy spaces and completions of non-complete quasi-Cauchy spaces. We
further show that symmetric quasi-Cauchy spaces can be identified with
classical Cauchy spaces introduced by Keller [1].
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A topological insight into the polar involution of convex sets

Mathematics Subject Classification (MSC): Primary 52A20,
52A21, 54B20, 54C10, 54C55; Secondary 54H15, 57S25

Abstract. Let us denote by Kn0 the family of all closed convex sets A ⊂ Rn

containing the origin 0 ∈ Rn. For A ∈ Kn0 , its polar set is denoted by A◦.
Namely,

A◦ :=

{
x ∈ Rn : sup

a∈A
〈a, x〉 ≤ 1

}
,

where 〈·, ·〉 stands for the usual inner product on Rn.
In this talk, we will discuss the topological nature of the polar map

A→ A◦ on (Kn0 , dAW ), where dAW denotes the Attouch-Wets metric. We will
show that (Kn0 , dAW ) is homeomorphic to the Hilbert cube Q =

∏∞
i=1[−1, 1]

and that the polar map is topologically conjugate with the standard based-
free involution σ : Q → Q, defined by σ(x) = −x for all x ∈ Q. We
will also characterize all the inclusion-reversing involutions on Kn0 which are
conjugate σ. In this sense, we will show that the polar map is essentially
the only possible decreasing involution with a unique fixed point on Kn0 .
More precisely, we will prove that every based-free decreasing involution
f : Kn0 → Kn0 is conjugate with the standard involution on Q and f is
of the form f(A) = T (A◦) for some positive-definite linear isomorphism
T : Rn → Rn.
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Jones polynomials of 3-strand weaving knots

Mathematics Subject Classification (MSC): 57K10, 57K14

Abstract. In this talk, we discuss a formula for the Jones polynomial of
3-strand weaving knots, and its evaluations at certain roots of unity. This
formula is derived by diagonalization of the Burau matrices associated with
weaving 3-braids over an appropriate function field. Afterwards, we substi-
tute specific values for the variable t of this formula to recover information
about the knot determinant and the unknotting number of the corresponding
knots.

This is joint work with my research advisor M. Prabhakar.
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On Asplund spaces Ck(X) with the compact-open topology

Mathematics Subject Classification (MSC): 54C35, 54G12, 54H05,
46A03

Abstract. A famous theorem of Namioka and Phelps says that for a com-
pact space X, the Banach space C(X) is Asplund iff X is scattered. We
extend this result to the space of continuous real-valued functions endowed
with the compact-open topology Ck(X) for several natural classes of non-
compact Tychonoff spaces X. The concept of ∆1-spaces recently introduced
has been shown to be applicable for this research.

This is a joint work with Ondrej Kurka and Arkady Leiderman.
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Preservation of inverse limits and G-fibrations under the twisted
product functor

Mathematics Subject Classification (MSC): 54H11, 54H15, 55P91

Abstract. Given a continuous homomorphism of topological groups α :
G′ → G, every G-space and every G-map can be regarded as G′-space and
G′-map respectively, so we get the restriction functor res : G-Top → G′-
Top. That functor preserves many properties from objects and morphisms
in G-Top and is right adjoint of the functor of twisted product G×α− : G′-
Top → G-Top. A natural question is whether the properties of the ob-
jects and morphisms in G′-Top are also preserved under the twisted product
functor. In this talk we will give sufficient conditions in order to have the
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preservation of inverse limits and equivariant fibrations under the twisted
product functor, that is to say, the twisted product of the inverse limit of an
inverse sequence in G′-Top is the inverse limit of the corresponding inverse
sequence in G-Top; also if p : E → B is a G′-fibration, then the induced
G-map p̃ : G×α E → G×α B is a G-fibration.

Theodoros Karakasidis, Evangelos Karvelas, Stavros Doulkeridis
and Ioannis Sarris
Condensed Matter Physics Laboratory, Department of Physics, University
of Thessaly, Lamia, Greece
e-mail: thkarak@uth.gr

Investigation of topology effect on the mixing process between the
nanoparticles and the biological fluid inside T shaped micromixers

Abstract. During metastasis of cancer cells, circulating tumor cells (CTCs)
are released from the primary tumor, reach the bloodstream, and colo-
nize new organs. A potential reduction of metastasis may be accomplished
through the use of nanoparticles in micromixers in order to capture the
CTCs that circulates in blood. In the present study, the effective mixing
of nanoparticles and the blood that carries the CTCs are investigated. The
mixing procedure was studied under various inlet velocity ratios (Vp/Vc)
and several T-shaped micromixer geometries with different topologies of the
rectangular cavities by using computational fluid dynamics techniques. Two
streams are mixed in T-shaped microfluidic reactors with various small rect-
angular cavities under various inlet conditions between the two streams.

Acknowledgements: T. Karakasidis and E. Karvelas acknowledge sup-
port by the project ParICT CENG: Enhancing ICT research infrastructure
in Central Greece to enable processing of Big data from sensor stream, mul-
timedia content, and complex mathematical modelling and simulations (MIS
5047244) which is implemented under the Action Reinforcement of the Re-
search and Innovation Infrastructure, funded by the Operational Program
Competitiveness, Entrepreneurship and Innovation (NSRF 2014-2020), and
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co-financed by Greece and the European Union (European Regional Devel-
opment Fund).
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A note on vector spaces with an order unit

Mathematics Subject Classification (MSC): 54C10, 46B40

Abstract. An element 1X of an ordered real vector space X is said to be
an order unit in X if for each x ∈ X there is a real number α > 0 such
that α1X ≥ x. We present a few results on such spaces equipped with the
topology whose base is the collection of balls B(x, ε) := {y ∈ X : ‖y− x‖ <
ε} (x ∈ X, ε > 0), where for x ∈ X, ‖x‖ := inf{λ > 0 : −λ1X ≤ x ≤ λ1X}.
The main result is an open mapping theorem for weakly additive, order-
preserving mappings between vector spaces with order units.
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A criterion of compact sets in Lp-spaces and its application

Mathematics Subject Classification (MSC): 54C35, 46B50, 46E30,
57N20

Abstract. Compactness of subsets in function spaces have been studied in
analysis. In this talk, we shall give a criterion for subsets in Lp-spaces on
metric measure spaces to be compact, which is a generalization of the results
by A.N. Kolmogorov [1] and M. Riesz [2]. Using this criterion, we investigate
the topological types of subspaces consisting of Lipschitz functions with
bounded supports in Lp-spaces.
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Applications of joint ergodicity to topological dynamical systems

Mathematics Subject Classification (MSC): 37-XX, 37A05

Abstract. Whenever we have a multiple ergodic average that converges to
the expected limit (i.e., the product of the integrals of the functions appear-
ing in the average), we say that we have joint ergodicity for the sequences of
iterates. In such cases we can, almost immediately, get applications to topo-
logical dynamical systems. In this talk, I will discuss recent developments
in the topic.
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Remarks on hyperspaces of knots

Mathematics Subject Classification (MSC): 54F16, 54H05, 57K10

Abstract. The local contractibility and Borel complexity of the hyperspaces
of polygonal or tame knots are discussed.
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On Some Contractive Mappings and a New Version of Implicit
Function Theorem in Topological Spaces

Mathematics Subject Classification (MSC): 47H10, 54H25

Abstract. The main goal of this article is to study about the existence of
fixed points of some contractive mappings in topological spaces. At first,
we define two new contractive mappings, viz., h-A-contractive and h-A1-
contractive mappings on a topological space X, where h : X × X → R+

is a function and A,A1 are two implicit collections of functions. Then we
obtain some fixed point results concerning these two contractive mappings.
Finally, we obtain a new version of implicit function theorem on topological
spaces in the light of one of our obtained fixed point result.

Arkady Leiderman
Department of Mathematics, Ben-Gurion University of the Negev,
Beer Sheva, Israel
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`-dominance for some classes of scattered spaces

Mathematics Subject Classification (MSC): 54C35, 54G12

Abstract. We say that a Tychonoff space Y is `-dominated by a Tychonoff
spaceX if there exists a linear continuous operator onto T : Cp(X)→ Cp(Y ).

There are many topological properties which are invariant under `-domi-
nance, and there are many which are not. For instance, it is known that
if Y is `-dominated by a metrizable compact space X, then Y also is a
metrizable compact space, while Y does not have to be compact if X is (a
non-metrizable) compact space.
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We report on new results obtained in several recent joint papers [1], [2],
[3]. All undefined notions can be found in the papers.

Theorem 1. [1] Let Y be `-dominated by X.

(1) If X is σ-scattered (σ-discrete), then Y is σ-scattered (σ-discrete, re-
spectively).

(2) If X is a scattered Eberlein compact space, then Y also is a scattered
Eberlein compact space.

(3) If X is a ∆-space, then Y also is a ∆-space.

(4) Let X and Y be metrizable spaces (for instance, let both be subsets of
the real line R). If X is a Q-set, then Y also is a Q-set.

(5) Let X and Y be metrizable spaces. If X is scattered, then Y also is
scattered.

Theorem 2. [2] Let Y be `-dominated by X.

(1) If X is a ∆1-space, then Y also is a ∆1-space.

(2) If X is pseudocompact and every countable set in X is scattered, then
Y has the same properties.

(3) If X is a compact scattered space, then Y is a pseudocompact space
such that its Stone–Čech compactification βY is scattered.

Theorem 3. [3] Let X = [1, α], where α is a fixed infinite countable ordinal.
Then Y is `-dominated by X if and only if Y is homeomorphic to [1, β], where
β is a countable ordinal such that either β < α, or α ≤ β < αω.
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C∗-Algebra, Linear Operators and Quantum Mechanics

Mathematics Subject Classification (MSC): 46L60, 47L90, 46N50,
81Q10

Abstract. This paper describes in a short presentation the connection of
C∗-Algebra, Linear operators and Quantum Mechanics. Starting from C∗-
Algebra brief introduction we proceed on the Linear Adjoint Operators and
we prove some basic theorems and useful outcomes. The linear operators are
one of the basic ground-place for Quantum Mechanics mathematical repre-
sentations emphasizing the different representations and Dirac observables.
We finally conclude on the subject by discussing more on observables and
how Quantum Mechanics mathematical construction is different from the
Classical mechanics.
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Equivariant simultaneous extension operators for continuous maps

Mathematics Subject Classification (MSC): 54C55, 54H15

Abstract. Let us suppose that A is a closed invariant subset of a metrizable
G-space Z, and V is a locally convex linear G-space, where G is a compact
Lie group. Let C(Z, V ) denote the vector space of continuous maps from Z
into V , and similarly for C(A, V ). We equip these mapping spaces with the
compact-open topology and the action defined by (gf)(x) = gf(g−1x). In
this talk, we will discuss the existence of an equivariant linear homeomorphic
embedding Λ : C(A, V ) → C(Z, V ) and an invariant neighborhood X of A
such that for every f ∈ C(A, V ), we have that Λ(f)|A = f , ImΛ(f) ⊂
conv(Imf ∪ {0}) and Im(Λ(f)|X) ⊂ conv(Imf) (here, Im(f) denotes the
image of the map f and conv denotes the convex hull).
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Topologizing the space of minimal primes of an M -frame

Mathematics Subject Classification (MSC): 06D22

Abstract. An M -frame is an algebraic frame satisfying the Finite Inter-
section Property. Given an M -frame, call it L, we can topologize the set of
minimal prime elements of L, which we will denote by Min(L). One such
way we could topologize Min(L) is with the Zariski topology as is done with
the prime ideals of a commutative ring. The other is the inverse topology
which has a similar construction to that of the Zariski topology. Our aim
in this talk to is to study these topological spaces and the interplay that
exists between the topological properties of Min(L) and the frame-theoretic
properties of L.
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Non-Hausdorff and non-Urysohn homogeneous spaces

Mathematics Subject Classification (MSC): 54A25, 54D10, 54D20,
54D35, 54D80

Abstract. Let n ≥ 2 be an integer. For a topological space X the Hausdroff
number H(X) (resp. the Urysohn number U(X)) is the least cardinal num-
ber κ such that for every subset A ⊆ X with |A| ≥ κ there exist open neigh-
bourhoods Ua, a ∈ A, such that

⋂
a∈A Ua = ∅ (resp.

⋂
a∈A Ua = ∅); a space

X is said n-Hausdorff (resp. n-Urysohn), if H(X) ≤ n (resp. U(X) ≤ n)
[1,2]. We present results on n-Hausdorff homogeneous and n-Urysohn ho-
mogeneous spaces. In particular, new cardinal bounds for these spaces and
the construction of an n-H-closed homogeneous extension for n-Hausdorff
spaces are given.
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Maximal equivariant compactifications

Mathematics Subject Classification (MSC): 54H15, 54D35, 54F05

Abstract. I am going to present results from [2]. Let G be a locally
compact group. Then for every G-space X the maximal G-proximity βG
can be characterized by the maximal topological proximity β as follows:

A βG B ⇔ ∃V ∈ Ne V A β V B.

Here, βG : X → βGX is the maximal G-compactification of X (which is an
embedding for locally compact G by a classical result of J. de Vries [3]), V
is a neighbourhood of e and A βG B means that the closures of A and B do
not meet in βGX.

Note that the local compactness of G is essential. This theorem comes as
a corollary of a general result about maximal U -uniform G-compactifications
for a useful wide class of uniform structures U on G-spaces for not necessarily
locally compact groups G. It helps, in particular, to derive the following
result. Let (U1, d) be the Urysohn sphere and G = Iso(U1, d) is its isometry
group with the pointwise topology. Then for every pair of subsets A,B in
U1, we have

A βG B ⇔ ∃V ∈ Ne d(V A, V B) > 0.

Note also that, by [1], βGU1 is metrizable and can be identified with the
Gromov compactification of the metric space (U1, d).
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Mayer-Vietoris sequence for generating families in diffeological
spaces

Abstract. We prove a version of the Mayer-Vietoris sequence for De Rham
differential forms in diffeological spaces. It is based on the notion of a
generating family instead of that of a covering by open subsets.
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[5] G. Hector, E. Maćıas-Virgós, E. Samart́ın-Carbón, De Rham cohomology
of diffeological spaces and foliations. Indag. Math., New Ser. 21, No. 3–4,
212–220 (2011).

[6] P. Iglesias-Zemmour, Diffeology. American Mathematical Society (AMS)
(2013).

[7] P. Iglesias-Zemmour, Differential forms on the cross. http://math.

huji.ac.il/~piz/documents/DBlog-Rmk-DFOTC.pdf.

102

http://math.huji.ac.il/~piz/documents/DBlog-Rmk-DFOTC.pdf
http://math.huji.ac.il/~piz/documents/DBlog-Rmk-DFOTC.pdf


[8] N. Iwase, N. Izumida, Mayer-Vietoris sequence for differentiable/diffeolo-
gical spaces, in: Algebraic topology and related topics. Selected papers based
on the presentations at the 7th East Asian conference on algebraic topology,
Mohali, Punjab, India, December 1–6, 2017. Singapore: Birkhäuser. 123–
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A topological dynamical view of transposition hypergroups

Mathematics Subject Classification (MSC): 22-XX, 54Hxx

Abstract. The notion of “hypergroup”, which generalizes the one of “gro-
up”, has proven to be a central notion for various areas of mathematics. In
particular, join spaces (i.e., commutative transposition hypergroups) play
a unifying role in the study of classical geometries; each of the descip-
tive, spherical, and projective geometry can be formulated in terms of join
spaces. We will present examples of transposition and rev-transposition
hypergroups, and topological results on these settings.
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Homotopy contexts of Howie towers

Mathematics Subject Classification (MSC): 57M20, 57M07

Abstract. The concept of (A,B)-tower lifting was invented by James Howie
and has been successfully applied in asphericity and cohomological finiteness
problems in the early 80s.

We will consider this concept in a broader homotopy context to better
understand the reasons for its effectiveness.

Jan van Mill, Alan Dow, Klaas Pieter Hart and Hans Vermeer
KdV Institute for Mathematics, University of Amsterdam,
P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
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Closed copies of N in RRRω1

Mathematics Subject Classification (MSC): Primary 54C45;
Secondary 03E17, 03E50, 03E55, 54D35, 54D40, 54D60, 54G20

Abstract. We investigate closed copies of N in powers of R with respect to
C∗- and C-embedding. We show that Rω1 contains closed copies of N that
are not C∗-embedded.
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Characterization of maximal ideals by F − lim

Abstract. Let {Ri}i∈I be an infinite family of rings and R =
∏

i∈I Ri their
product. In this work, we investigate the prime ideals of R by F − lim.
Special attention is paid to relationship between the prime ideals of Ri and
the elements of Spec(

∏
i∈I Ri) use F−lim.
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The Hewitt-Nachbin number of space of the compact complete
linked systems

Mathematics Subject Classification (MSC): 18A22, 18F60, 54A25

Abstract. A system ξ = {Fα : α ∈ A} of closed subsets of a space X is
called linked if any two elements from ξ intersect [1].

A.V. Ivanov defined the space NX of complete linked systems (CLS) of
a space X in a following way:

Definition 1 [2]. A linked system M of closed subsets of a compact X
is called a complete linked system (a CLS) if for any closed set of X, the
condition

“Any neighborhood OF of the set F consists of a set Φ ∈M”
implies F ∈M.
A set NX of all complete linked systems of a compact X is called the

space NX of CLS of X. This space is equipped with the topology, the open
basis of which is formed by sets in the form of

E = O(U1, U2, . . . , Un)〈V1, V2, . . . , Vs〉={M ∈ NX : for any i = 1, 2, . . . , n
there exists Fi ∈M such that Fi ⊂ Ui, and for any j = 1, 2, . . . , s, F∩Vj 6= ∅
for any F ∈ M}, where U1, U2, . . . , Un, V1, V2, . . . , Vs are nonempty open in
X sets [2].

Definition 2 [3]. Let M be a complete linked systems of a space X.
The CLS M will be said a compact complete linked system if M contains at
least one compact element.

We denote a compact complete linked system M by a CCLS.
Definition 3 [3]. We call an N-compact kernel of a topological space X

the space

NcX = {M ∈ NX : M is a CCLS}.

Put q(X) = min{τ ≥ ℵ0 : X is τ -placed in βX}; is called the Hewitt-
Nachbin number of X. We say that X is a Qτ -space if q(X) ≤ τ [4].
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Theorem 1. Let X be an infinite T1-space. Then q(NcX) ≤ d(X).
A space X is called an mτ -space, where τ is given cardinal, if for each

canonical closed set F in X and each point x ∈ F there is a set P of type
Gτ in X such that x ∈ P ⊂ F . Clearly, X is an mτ -space for |X| = τ . This
allows us to give the following definition: put m(X) = min{τ ≥ ℵ0 : X is
an mτ -space} [4].

Theorem 2. If q(NcX) ≤ τ and m(NX) ≤ τ , then NcX is τ -placed in
NX.
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Discussion on some fixed point models and their applications

Mathematics Subject Classification (MSC): Primary 47H10;
Secondary 54H25

Abstract. Few historical fixed point theorems became as a model like
algorithms in computer science. Few of them are ([1, 2, 4, 5]). Also, the
purpose of this discussion on this forum based on a paper ([3]) by speaker
of this talk. A careful reading of the above article will evident that the
author intended to discuss various supportive tools to obtain common fixed
points in metric and various other related spaces. It was also observed
that how the concepts of continuity, commutativity, containment of ranges,
etc. are important for establishing fixed and common fixed points. Lots
of applications also obtain in the area of Mathematical Sciences, Biological
Sciences, Medical Sciences, Social Sciences particularly Economics, etc.

Apart from the above highlighted paper we referred to ([6]) and ([7])
by B.E.Rhoades that motivated large number of researchers not only in
20th century but also in 21st century. Here we are very much focussed on
the results which generalizes Banach([1]), Kannan([5]), Boyd and Wong([2])
either in the lines of Banach([1]) or Jungck([4]). Also, we shall discuss some
applications of those results.

Acknowledgements: Dedicated to Late P V Lakshmaiah on his 32nd
Death Anniversary.
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On Pure Twisted Virtual Braids

Mathematics Subject Classification (MSC): 57K10, 57K14

Abstract. Twisted virtual braids are a combinatorial generalization of
virtual braids. Recently, S. Kamada et al. [1] proved theorems for twisted
links corresponding to the Alexander theorem and the Markov theorem in
knot theory. They have also provided a group presentation and a reduced
group presentation of the twisted virtual braid group.

In this talk, we discuss the pure twisted virtual braid group. We discuss
the idea of the proof that the twisted virtual braid group is a semi-direct
product of the pure twisted virtual braid group and the symmetric group.
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Also, provide a structure for the pure twisted virtual braid group in terms
of a semi-direct product of groups.

If time permits, we might present the notion of abstract twisted virtual
braids as equivalence classes of braid diagrams on a surface (possibly non-
orientable), joining two distinguished boundary components.

This is joint work with V. G. Bardakov, T. A. Kozlovskaya, M. Prab-
hakar.
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Fréchet subspaces of minimal usco/cusco maps

Mathematics Subject Classification (MSC): 54C60, 46A04

Abstract. Minimal usco and minimal cusco maps play a crucial role in var-
ious branches of mathematics, including functional analysis, optimization,
and the study of the differentiability of Lipschitz functions, among others.
Consequently, understanding the topological properties of the spaces con-
taining these maps is of great importance.

We explore the topological properties of the spaces of minimal usco and
minimal cusco maps, specifically with respect to the topologies of uniform
convergence on bornologies. Our investigation focuses on metrizability and
complete metrizability. Furthermore, we investigate Fréchet locally convex
subspaces of these spaces.
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First Countable Locally Compact Pseudocompactifications and
Countably-Compactifications

Mathematics Subject Classification (MSC): Primary 54C30;
Secondary 54D35, 03E17

Abstract. A pseudocompactification of a space X is a pseudocompact space
Y in which X is densely embedded. A countably-compactification is defined
similarly.

Theorem 1. Each locally compact, first countable Hausdorff space has
a locally compact, first countable, Hausdorff pseudocompactification.

Theorem 2. b = c is equivalent to the statement that each locally com-
pact, first countable Hausdorff space has a locally compact, first countable,
Hausdorff countably-compactification.

Here b is the least cardinality of an unbounded family of functions fα :
ω → ω that is unbounded in the eventual domination order f <∗ g ⇐⇒
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∃k(f(n) < g(n))∀n > k. One direction in Theorem 2 is provided by a well-
known example using an unbounded set of graphs of functions well-ordered
wrt <∗.

Example. There is a locally compact, locally countable [hence first
countable] Hausdorff space X of weight (= cardinality) b for which no first
countable countably-compactification exists.

Peter Nyikos, Serhii Bardyla and Lyubomyr Zdomskyy

University of South Carolina, Columbia, SC 29208 USA
e-mail: nyikos@math.sc.edu

First Countable 0-dimensional Pseudocompactifications and
Countably-Compactifications

Mathematics Subject Classification (MSC): Primary 54C30;
Secondary 54D35, 03E17

Abstract. A 0-dimensional space is a Hausdorff space with a base of clopen
(= closed-and-open) sets.

Theorem 1. If X is a 0-dimensional, first countable space with a base
B such that every point of X is in fewer than s members of B, then X has
a 0-dimensional, first countable pseudocompactification.

Here s is the least cardiality of a splitting family on the power set of ω,
meaning a family S of subsets of ω such that for every subset A of ω, there
exists S ∈ S such that A ∩ S and A \ S are both infinite.

Corollary. Every Hausdorff space with a point-countable base of clopen
sets has a 0-dimensional, first countable pseudocompactification.

Problem. If a 0-dimensional space has a point-countable base, must it
have a point-countable base of clopen sets?

Theorem 2. [b = c] If X is a first countable space with a base B of
clopen sets, such that |B| < c, and such that each point is in < s members of
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B, then X can be (densely) embedded into a 0-dimensional, first countable,
countably compact space.

Corollary. [b = c] Every Hausdorff space of weight < c with a point-
countable base of clopen sets can be densely embedded into a 0-dimensional,
first countable, countably compact space.

Alexander V. Osipov and Konstantin Kazachenko
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Joint continuity in semitopological monoids

Mathematics Subject Classification (MSC): 54H15, 20M20, 54H11

Abstract. In this study, using Reznichenko’s results [3, 4], we generalize
Lawson’s theorems on joint continuity in compact (locally compact) semi-
topological semigroups [1, 2].

Theorem 1. Let S be a pseudocompact Tychonoff right topological
semigroup with right identity e, X be a Tychonoff pseudocompact space,
π : S × X → X be a separately continuous action such that π(e, x) = x
for all x ∈ X, and (S,X) be a Grothendieck pair. Then π is continuous at
(e, x) for all x ∈ X.

Corollary 2. Let S be a pseudocompact Tychonoff semitopological
monoid, (S, S) be a Grothendieck pair and G be a subgroup of S. Then G
is a paratopological group.

Corollary 3. Let S be a pseudocompact Tychonoff semitopological
semigroup which is a weak qD-space, G be a semi-open subsemigroup of S
with identity. Then multiplication restricted to G×S is continuous at points
G− × S where G− is a set of unit elements of G.
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Corollary 4. Let S be a pseudocompact Tychonoff semitopological
semigroup which is a weak qD-space, G be a semi-open subgroup of S. Then
G is a paratopological group.
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Finitely open or closed functions

Mathematics Subject Classification (MSC): Primary 54C08,
26A15, 26A21, 54H05, 54E40

Abstract. Recall, that a subset of X is an LCn-set if it can be written as
a union of n locally closed in X sets (n ∈ N). A set is locally closed if it is
the intersection of a closed and an open set.

We say that a function f : X → Y is finitely open or closed if X admits
a finite cover γ such that, for each C ∈ γ, the restriction f |C is open or
closed.

We will consider the following question (X, Y can be Polish spaces or
their subspaces):
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Let f : X → Y be a continuous function such that, for every open set O
and some n ∈ N, the image f(O) is an LCn-set. Is f finitely open or closed?

In other words: Is every open-LCn continuous function decomposable
into finitely many of open or closed functions?

A natural generalization of this question is to replace continuous func-
tions f with LCn-measurable functions.
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On W -convexity

Mathematics Subject Classification (MSC): 54E35, 52A01

Abstract. Künzi and Yilzid introduced the concept of convexity structures
in the sense of Takahashi in quasi-pseudometric spaces in 2016. In this talk,
we continue the study of this theory, introducing the concept of W -convexity
for real-valued pair of functions defined on an asymmetrically normed real
vector space. Moreover, we show that all minimal pairs of functions defined
on an asymmetrically normed real vector space equipped with a convex
structure which is W -convex whenever W is translation-invariant.
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New best proximity point and pair results via MNC and their
application to q-calculus

Mathematics Subject Classification (MSC): Primary 47H10;
Secondry 34A08, 47H08, 47H09

Abstract. In this paper primary motive is to establish new best proximity
point (pair) theorems with the utilization of techniques such as measure of
noncompactness and several auxiliary functions. The obtained results are
then applied to demonstrate existence of optimum solutions of a system of
fractional order q-differential equations.
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On topology expansion using ideals

Mathematics Subject Classification (MSC): 54A10, 54A05, 54B99,
54E99

Abstract. In ideal topological space 〈X, τ, I〉 using a local function defined
by ideal I we obtain a new, finer, topology τ ∗. The aim of this paper is
to find an ideal which creates a new topology with a specific set A in it,
or which preserves a specific property, like preserving the family of regular
open sets, or connectivity.

Acknowledgements: This talk is supported by the Science Fund of the
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Ramsey- theoretic phenomena in mathematical structures: similarity and
diversity – SMART
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One-local retract in modular metric spaces

Mathematics Subject Classification (MSC): 55

Abstract. In this talk, we illustrate the extension of the well-known results
on one-local retract from metrics to the framework of modular metrics. We
show that any self map ψ : Xw → Xw has at least one fixed point whenever
the collection of all qw-admissible subsets of Xw is both compact and normal.
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Relations on ultrafilters between the Rudin–Keisler and Comfort
preorders

Abstract. As usual, βX denotes the standard Čech–Stone compactification
of the discrete space X, which we identify with the set of ultrafilters over X
(see [1, 2, 7]). We consider here ultrafilters over ω although most of our
results remain true for ultrafilters over any infinite set X. The Rudin–Keisler
preorder ≤RK on βω is defined by letting u ≤RK v iff there exists f : ω → ω
such that f̃(v) = u, where f̃ : βω → βω is the continuous extension of f .
The Comfort preorder ≤C on βω is defined by letting u ≤C v iff any v-
compact space is u-compact, where a space X is u-compact iff f̃(u) ∈ X for
any f : ω → X. (See [1, 7] for more on ultrafilters and ≤RK, and [3, 4]
for ≤C.)

For u, v ∈ βω and any ordinal α, define: uR0 v iff u is principal, R<α =⋃
β<αRβ, and uRα v iff there exists a continuous map f : βω → βω such

that f(v) = u and f(n)R<α v for all n < ω. The hierarchy is non-degenerate
and lies between ≤RK and ≤C as stated in the following theorem.

Theorem 1. R1 = ≤RK; R<α ⊂ Rα for all α < ω1; R<ω1 = Rω1 = ≤C.

If X, Y are spaces and α is an ordinal, f : Xα → Y is right-continuous
w.r.t. A ⊆ X iff for all β < α the shift x 7→ f(a0, a1, . . . , x, bβ+1, bβ+2, . . .) is
continuous whenever a0, a1, . . . ∈ A and bβ+1, bβ+2, . . . ∈ X. As shown in [9,
10], if n < ω, X is discrete, and Y is compact Hausdorff, then every f : Xn →
Y uniquely extends to f̃ : (βX)n → Y that is right-continuous w.r.t.X. This
fact provides a canonical way to obtain, for an arbitrary first-order model A,
its ultrafilter extension βA ([9, 10], cf. also [6]), generalizing the well-known
construction of ultrafilter extensions of semigroups comprehensively treated
in [7]. (Some historical remarks can be found in [8].)

If n < ω, the relations Rn can be redefined in terms of ultrafilter exten-
sions of n-ary operations on ω as follows: uRn v iff there exists f : ωn → ω
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such that f̃(v, . . . , v) = u. Moreover, Rm ◦ Rn = Rnm (so Rn are not pre-
orders for 2 ≤ n < ω). These observations can be expanded to all Rα by
using ω-ary operations on ω. Such an operation is identified with a continu-
ous map of the Baire space ωω into the discrete space ω; these maps admit
a natural hierarchy ranked by countable ordinals.

Proposition 1. Any continuous f : ωω → ω uniquely extends to f̃ :
(βω)ω → βω that is right-continuous w.r.t. ω (in other words, ω-ary op-
erations on ω extend to such operations on βω).

Proposition 2. Let α < ω1 and u, v ∈ βω. Then uRα v iff there exists
a continuous f : ωω → ω of rank α such that f̃(v, v, . . .) = u.

The composition of arbitrary R<α is expressed via a multiplication-like
operation on ordinals. To simplify notation, denote supγ<α(γ ·β) by (<α)·β;
the explicit calculation of these ordinals, used in getting the following result,
is rather cumbersome.

Theorem 2. Let α, β < ω1.

(i) Rα ◦ Rβ = Rγ where γ = β · α if β = 0 or α < ω, γ = β · (α + 1)− 1
if 0 < β < ω and α ≥ ω, and γ = β · (α + 1) if α, β ≥ ω;

(ii) If α > 0 is limit, then R<α ◦Rβ = R<γ where γ = β · α;

(iii) If β > 0 is limit, then Rα ◦ R<β = R<γ where γ = (<β) · α if α < ω,
and γ = (<β) · (α + 1) otherwise;

(iv) If α, β > 0 are limit, then R<α ◦R<β = R<γ where γ = (<β) · α.

Corollary 1. Let 2 ≤ α ≤ ω1. Then R<α is a preorder iff α is multiplica-
tively indecomposable.

Define preorders between ≤RK and ≤C by letting ≤0 = ≤RK and ≤1+α =
R<ωωα for all α ≤ ω1. So, if α is infinite, R<α = ≤α iff α is an epsilon
number. Also ≤α ◦ ≤β = ≤γ where γ = max(α, β).

As shown in [5], for any ultrafilter v and semigroup S, the set {u : u ≤C v}
forms a subsemigroup of βS. This can be expanded to arbitrary first-order
models and relations R<α as follows.
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Corollary 2. For every α > 1, ultrafilter v, and model A of any signature,
{u : uR<α v} forms a submodel of the model βA iff α is additively inde-
composable. Consequently, for all α > 0, v, and A, {u : u ≤α v} forms
a submodel of βA.

If R, S are binary relations on βω, let us say that u is (R, S)-minimal
iff vR u implies uS v, for all v. So (R1, R1)- and (R<ω1 , R<ω1)-minimal are
just ≤RK- and ≤C-minimal, respectively.

Proposition 3. Let u be non-principal.

(i) If v is ≤RK-minimal and uRα v, then u is (R<ω1 , Rα)-minimal.

(ii) u is ≤RK-minimal iff it is a (R<α, R<β)-minimal weak p-point, for
every α, β ≤ ω1.

(iii) u is a weak p-point iff for any g : ω2 → ω and v,w ∈ βω with u =
g̃(w, v) there exists n ∈ ω such that g̃(n, v) is either u or principal.

Many natural questions on minimality seem hard to answer; we are not
aware, e.g., whether each (R2, R2)-minimal is (R3, R3)-minimal or at least
(R3, R<ω1)-minimal.

Ultrafilter extensions of ω-ary operations can be used to state Ramsey-
type results. Let f [X] be the image of X under f , and let I = {x ∈ ωω : x is
increasing}. If X ⊆ ω and f : ωω → Y , we say that f is constant upward
on X iff |f [Xω ∩ I]| = 1, and quasi-invertible upward on X iff there exists
g : Y → ω such that for any infinite A ⊆ X we have g[f [Aω ∩ I]] ⊆ A and
|A\ g[f [Aω ∩ I]]| < ω. The following refines the well-known characterization
of Ramsey ultrafilters as selective ones (see [1, 7]).

Proposition 4. A non-principal u ∈ βω is ≤RK-minimal iff any continuous
f : ωω → ω is either constant upward or quasi-invertible upward on some
X ∈ u.
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On algebraic K-theories parametrised by polyhedra for associative
rings

Abstract. In a series of papers, Bruns and Gubeladze defined an alge-
braic K-functor for associative rings, which uses a convex polyhedron sat-
isfying certain properties as the second argument (the so-called polytopal
K-theory). They found all polygons suitable for these properties and proved
that the corresponding K-theories decompose into a direct sum of Quillen’s
K-theories.

Thus, they made a conjecture that this fact is true for any polyhedron
suitable for their conditions. The report will be devoted to the description
of the Brans-Gubeladze construction and the proof of their conjecture in the
general case.
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Generalization of Arc Shift for Twisted Knots

Mathematics Subject Classification (MSC): 57K10, 57K14

Abstract. M. O. Bourgoin [1] introduced the twisted knot theory as a
generalization of classical knot theory, virtual knot theory, and projective
knot theory. Twisted knots are stable equivalence classes of oriented knots
in orientable three-manifolds that are orientation I-bundles over closed but
not necessarily orientable surfaces. Diagrammatic representations of twisted
knots are twisted knot diagrams. Twisted knot diagrams are knot diagrams
on R2 possibly with some crossings called virtual crossings and bars which
are short arcs intersecting the arcs of the diagrams. Unlike virtual knots,
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only a few invariants are known for twisted knots. Hence, finding invariants
for twisted knots is quite an interesting problem. Arc shift move is an
unknotting operation for virtual knots [2].

In this talk, I will define arc shift move for twisted knots and establish
that it is an unknotting operation for twisted knots. Further, we establish
that this arc shift number is an invariant for twisted knots and discuss some
properties of arc shift move.

This is a joint work with my P.hD. student Ms. Komal Negi.
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Independence complexes of wedge of graphs

Mathematics Subject Classification (MSC): 05C69, 55P15, 05C10

Abstract. We provide detailed computations for the homotopy type of the
independence complexes of a wedge of path and cycle graphs. In particular,
we show that these complexes are either contractible or wedges of spheres.
In most cases, we determine the dimensions of these spheres.
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Pseudocompact algebraic structures

Mathematics Subject Classification (MSC): 54H99, 54D30, 54D35,
08B05

Abstract. An algebra (or algebraic structure) X = (X, {fα : α ∈ A})
is a set X together with a collection {fα : α ∈ A} of operations on X,
where fα : Xnα → X is nα-ary operation. If X is a topological space and the
operations fα are (separately) continuous, then X will be called a topological
(semitopological) algebra. We say that βX is a topological (semitopological)
algebra if each operation fα extends to a (separately) continuous operation
f̂α : (β X)n → β X.

Theorem 1. If X is a pseudocompact topological algebra, then (1) βX is
a semitopological algebra; (2) βX is a topological algebra if Xnα is pseudo-
compact for all α.

Theorem 2. If X is a countably compact semitopological algebra, then βX
is a semitopological algebra.

Theorem 3. Let X be a compact topological algebra and |A| ≤ ω. Then X
embeds in a product of metrizable topological algebras.

An operation M : X3 → X is called a Mal’cev operation if M(x, y, y) =
M(y, y, x) = x for all x, y ∈ X.

Theorem 4. Let X be a compact semitopological algebra and |A| ≤ ω.
Then (1) if X has caliber ω1, then X embeds in a product of metrizable
semitopological algebras; (2) if there is a Mal’cev operation among fα oper-
ations, then X is a Dugundji compact space and X embeds in a product of
metrizable semitopological algebras.
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Kuratowski Convergence of Nets of Sets in Approach Spaces

Mathematics Subject Classification (MSC): 54B20, 54B30

Abstract. lt is well known that, in a Hausdorff topological space (X,τ),
the Kuratowski convergence of nets of sets with respect to τ can also be
characterized by means of the Fell topology defined on the closed subsets of
X [3]. We give an analogue definition for Kuratowski convergence of nets of
sets in an Hausdorff approach space in [2]. In addition, we obtain a relation
with this new convergence and the recently defined Fell approach structure
in [1].
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Uniform selection principles and its applications

Mathematics Subject Classification (MSC): 54E15

Abstract. In recent times, the theory of the selection principles in uniform
spaces has been developing intensively.

L.D.R. Kočinac introduced and characterized uniform versions of classi-
cal topological notions of the Menger, Hurewicz and Rothberger properties,
also uniform γ-sets.

This work study explores certain important properties of the uniform
selection principle, such as the uniform Menger, uniform Hurewicz, uniform
Rothberger properties, and uniform γ-sets.

Throughout the work uniform spaces are assumed to be Hausdorff, and
mappings are uniformly continuous. The uniform structure is defined in
terms of covers. The terms of cover has an advantage because many impor-
tant concepts such as compactness, paracompactness, Lindelöf space and so
on are defined through the concept of covers [1], [3].

As known, to each selection principle for topological spaces it is naturally
associated the corresponding game and often selection principles can be
characterized game-theoretically. In uniform case to each uniform selection
principle one can assign also the corresponding game. For example, the game
UG associated to the uniform Hurewicz property is defined in the following
way. Two players, ONE and TWO, play a round for each positive integer.
In the n-th round ONE chooses a uniform cover αn ∈ U , and TWO responds
choosing a finite subfamily βn. TWO wins a play α1, β1;α2, β2, ... if, for each
x ∈ X, x ∈

⋃
n∈N

βn, for all but finitely many n; and otherwise ONE wins [2].

The uniform space (X,U) is uniform Hurewicz space iff ONE does not
have a winning strategy in UG. TWO has a winning strategy in UG iff the
uniform space (X,U) is σ-precompact.
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Unknottability, unlinkability and splittability of tangles

Mathematics Subject Classification (MSC): 57M25, 57M27

Abstract. A tangle T is a pair (B, σ) formed by a ball B and a collection
of properly embedded disjoint arcs σ in B. If σ has n components we say
that T is a n-string tangle.

Let K be a link in S3, and B a ball in S3 with exterior B′. If T =
(B,B ∩K) and T ′ = (B′, B′ ∩K) are tangles, then we say that T ∪ T ′ is a
tangle decomposition of K and that K is a closure of T (and of T ′). In case
there is a tangle decomposition of K with T one of the tangle components,
we also say that T embeds into the pair (S3, K), or, for abbreviation, that
it embeds into K.

If a tangle T embeds into the unknot, an unlink or a split link, we say
that T is unknottable, unlinkable or splittable.

In this talk, we discuss obstructions to these properties through geometric
characterizations, tangle sums and colorings. These obstructions allow us
to determine when several 2-string tangles are unknottable, unlinkable or
splittable, including all prime 2-string tangles with up to seven crossings.
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A characterization of homology d-manifolds with g2 ≤ 3

Mathematics Subject Classification (MSC): Primary 57Q25;
Secondary 05E45, 55U10, 57Q05, 57Q15

Abstract. The g-vector of a simplicial complex contains a lot of information
about the combinatorial and topological structure. Several classification re-
sults on the structure of normal pseudomanifolds and homology manifolds
have been given concerning the value g2. It is known that for g2 = 0, all the
normal pseudomanifolds of dimensions at least three are stacked spheres. In
the case of g2 = 1 and 2, all the prime homology manifolds are the polytopal
spheres and are obtained by some sort of retriangulation or join operation
from the previous one. In this talk, we shall present a combinatorial char-
acterization of the homology d-manifolds, d ≥ 3, with g2 = 3. These are
spheres and are obtained by operations such as join, some retriangulations,
and connected sums from spheres with g2 ≤ 2. Further, we will see a struc-
tural result on some prime normal d-pseudomanifolds with g2 = 3. Our
results, together with some previous work, classify (combinatorially) all the
normal 3-pseudomanifolds with g2 = 3.
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On reduction and separation of projective sets in Tychonoff spaces

Abstract. Below F , G , K , Z denote the classes of closed, open, compact,
and zero sets (pre-images of 0 ∈ [0, 1] ⊆ R under continuous maps), resp.;
S denotes an unspecified class. The classes are treated as operators so
F (X) consists of all closed sets in X, etc.; S (X) = S ∩ P(X). Let
S (Y ) � X = {S ∩X : S ∈ S (Y )} for F : X → Y let FA and F−1A denote
the image and pre-image of A. Φ is an ω-ary Hausdorff (or δs-)operation iff
there is S ⊆ ωω (the base of Φ) such that Φ(As)s∈ω<ω =

⋃
f∈S
⋂
n∈ω Af�n for

all As, s ∈ ω<ω ([6], [5], [1]; for κ-Suslin sets, see [9], [8]). E.g., if S = ωω, Φ
is the A-operation. A Φ-set is a set obtained by Φ. Let Φ(S , X) denote the
class of Φ-sets generated by sets in S (X) and Φ(S ) the union of Φ(S , X)
for all X.

The Borel hierarchy generated by S (X) is defined by alternating count-
able unions and complements; Σ0

α(S , X) and Π0
α(S , X) are its αth addi-

tive and multiplicative classes. E.g., Σ0
2(F , X) is Fσ(X) and Π0

2(F , X) is
Gδ(X). By induction on α, each Borel class is of form Φ(S , X) for some Φ.
The projective hierarchy generated by S (X), for Polish spaces X, is defined
by alternating projections of subsets of X × ωω onto X and complements;
Σ1
n(S , X) and Π1

n(S , X) are its nth additive and multiplicative classes.
E.g., Σ1

1(F ,R) and Π1
1(F ,R) consist of A-sets and CA-sets of reals. By the

Fundamental Theorem on Projections ([6], p. 264), if X is Polish, the class
of projections of sets in Φ(F , X × ωω) onto X is of form Ψ(F , X) for Ψ
with a base in Φ(Fσ, ω

ω); so by induction on n, each projective class is of
form Φ(F , X) for some Φ. For arbitrary X, we define projective classes as
Φ(S , X) for Φ such that the corresponding projective class in R is Φ(S ,R).
This approach clearly extends to σ-projective sets ([2], [7]) for any X.

S (X) has the reduction property iff for any A,B ∈ S (X) there are
C,D ∈ S (X) such that C ⊆ A, D ⊆ B, C ∩ D = ∅, and C ∪ D =
A ∪ B; the separation property iff for any disjoint A,B ∈ S (X) there is
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C ∈ S (X) ∩ {X \ S : S ∈ S (X)} such that A ⊆ C and B ∩ C = ∅. If
S (X) has reduction then the dual class {X\S : S ∈ S (X)} has separation.
The classes Σ0

α(F ,R), α > 1, Π1
1(F ,R), Σ1

2(F ,R) have reduction and the
stronger pre-well-ordering property (we do not formulate it here); V = L
implies reduction in Σ1

n(F ,R) for all n ≥ 2; and under PD (the Projective
Determinacy), Σ1

2n(F ,R) and Π1
2n+1(F ,R) have pre-well-ordering (the fact

known as the First Periodicity Theorem) and so reduction ([7], [9], [4], [8]).
If S (Y ) has reduction (separation) then S (Y ) � X has the same property;
Φ(S (Y ) � X) = Φ(S , Y ) � X for all Φ; whence we get:

Lemma 1. Let X ⊆ Y and S (X) = S (Y ) � X. Then Φ(S , X) =
Φ(S , Y ) � X and if Φ(S , Y ) has reduction (separation) then Φ(S , X) has
the same property.

E.g., S (X) = S (Y ) � X holds if S is F or G , and also if S is Z
for Tychonoff X, Y (Lemma 4). Given F : X → Y , F preserves S iff
A ∈ S (X) implies FA ∈ S (Y ), and F−1 preserves S iff B ∈ S (Y )
implies F−1B ∈ S (X). E.g., F is closed iff F preserves F , continuous iff
F−1 preserves F (or G ), compact iff F−1 preserves K , and perfect iff it is
closed, continuous, and compact. Since F−1Φ(As)s∈ω<ω = Φ(F−1As)s∈ω<ω
for all Φ, F , (As)s∈ω<ω , we get:

Lemma 2. If F−1 preserves S then F−1 preserves Φ(S ).

E.g., if F is continuous then F−1 preserves each of Φ(F ), Φ(G ), Φ(Z ),
and if F is compact then F−1 preserves Φ(K ). Given F : X → Y , define
its kernel kerF = {F−1{y} : y ∈ Y } and algebra of pre-images alg F =
{F−1B : B ⊆ Y }. Clearly, alg F = {A ⊆ X : F−1FA = A}, alg F is the
complete subalgebra of P(X) generated by kerF , so it is closed under all Φ.
Using the diagonal product of maps witnessing that As are zero sets, we get:

Proposition 1. If (As)s∈ω<ω is in Z (X), then there is a continuous F :
X → [0, 1]ω such that As ∈ alg F for all s ∈ ω<ω and so Φ(As)s∈ω<ω ∈ alg F
for all Φ.

Given (I,≤), a family (Ai)i∈I is decreasing iff Ai ⊇ Aj for all i ≤ j.
A map F : X → Y is closed-to-one iff kerF ⊆ F (X). It can be shown
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that for such F , F
⋂
i∈I Ai =

⋂
i∈I FAi for all directed (I,≤) and decreas-

ing (Ai)i∈I in (F ∩ K )(X), and so FΦ(As)s∈ω<ω = Φ(FAs)s∈ω<ω for all
decreasing (As)s∈ω<ω in (F ∩K )(X) and all Φ, whence we get:

Lemma 3. If S (X) ⊆ (F ∩ K )(X) is closed under finite intersections
and F : X → Y is closed-to-one and preserves S , then F preserves Φ(S ).

E.g., for Hausdorff X, Y and continuous F : X → Y , if X is compact
then F preserves Φ(F ); if moreover Y is perfectly normal then F preserves
also Φ(Z ). Lemmas 2 and 3 allow to transfer reduction (separation) to the
pre-image direction:

Proposition 2. Let S (X) ⊆ (F ∩ K )(X) be closed under finite inter-
sections and for any (As)s∈ω<ω in S (X) there exist Y and a closed-to-one
F : X → Y such that F and F−1 preserve S , (As)s∈ω<ω is in alg F , and
Φ(S , Y ) has the reduction (separation) property. Then Φ(S , X) has the
same property.

Lemma 4. If X ⊆ Y are Tychonoff, then Z (X) = Z (Y ) � X, Φ(Z , X) =
Φ(Z , Y ) � X and if Φ(Z , Y ) has reduction (separation) then Φ(Z , X) has
the same property.

For Z (X) ⊆ Z (Y ) � X, note that all F : X → [0, 1] continuously
extend to βX, the Čech–Stone compactification of X, and then to [0, 1]κ

with a suitable κ (see [3]). The main result of this note is:

Theorem 1. Let X be a Tychonoff space and Φ a Hausdorff operation.
If Φ(F ,R) has the reduction (separation) property, then Φ(Z , X) has the
same property.

By Lemma 4, it suffices to handle X = [0, 1]κ; using Proposition 1, verify
the assumptions of Proposition 2 with S = Z and Y = [0, 1]ω common for
all (As)s∈ω<ω in Z ([0, 1]κ).

Corollary 1. If X is Tychonoff, for all α < ω1, α > 1, Σ0
α(Z , X),

Π1
1(Z , X), Σ1

2(Z , X) have reduction; under PD, for all n < ω, n > 0,
Σ1

2n(Z , X), Π1
2n+1(Z , X) have reduction.
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Under σ-PD, Corollary 1 extends to the σ-projective classes generated
by Z (X).

The results were announced in [10].
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Examples in dimension theory of topological groups

Mathematics Subject Classification (MSC): 22A05, 54H11, 54F45

Abstract. Several examples concerning the covering dimension dim0 in the
sense of Katětov of topological groups are presented. Recall that, given
a topological space X, dim0X is the least integer n ≥ −1 such that any
finite cozero cover of X has a finite cozero refinement of order n, provided
that such an integer exists. If it does not exist, then dim0X = ∞. For
normal spaces, this dimension coincides with the covering dimension dim
in the sense of Čech, whose definition coincides with that of dim0 in which
“cozero” is everywhere replaced by “open.” In all of the examples “dim0”
can be replaced by dim. A space X with dim0(X) = 0 is said to be strongly
zero-dimensional.

All examples are based on the following one.

Universal example. There exist spaces C1 and C2 with the following
properties:

(1) dim0Ci = 0 for i = 1, 2;

(2) dim0(C1 × C2) > 0;

(3) Cn
1 is Lindelöf for each n ∈ N;

(4) the underlying set of the space C1 is the Cantor set C, its topology is
finer than that of C, and it has a base consisting of sets closed in C;

(5) C2 is second-countable; in fact, C2 is a subspace of the Cantor set C.

Both spaces C1 and C2 are retracts of certain Abelian topological groups
G1 and G2, respectively. Therefore, C1 × C2 is a retract of (and hence C-
embedded in) G1 ×G2, which implies that dim0(G1 ×G2) > 0. The groups
G1 and G2 have the following properties:

(1) Gn
1 is Lindelöf for every n ∈ N;
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(2) G1 is topologically isomorphic to a closed subgroup of a groupM1 being
a product of zero-dimensional second-countable topological groups;

(3) G2 is second-countable;

(4) dim0(G1) = dim0(G2) = 0;

(5) dim0(G1 ×G2) > 0.

This gives the following examples, which answer old questions of Arkhan-
gel’skii, Shakhmatov, Tkachenko, and Zambakhidze.

Theorem 1. There exist two strongly zero-dimensional Abelian topological
groups whose product has positive dimension.

Theorem 2. There exists a strongly zero-dimensional Abelian topological
group containing a closed subgroup of positive dimension.

Recall that a topological group G is said to be R-factorizable if, for
every continuous function f : G→ R, there exists a continuous epimorphism
h : G → H onto a second-countable topological group H and a continuous
function g : H → R such that f = g ◦h. It is known that any Lindelöf group
is R-factorizable and that dim0H ≤ dim0G for any topological group G and
any R-factorizable subgroup H of G. This implies the following result.

Theorem 3. There exists an R-factorizable topological group G and a
second-countable topological group H such that the product G × H is not
R-factorizable.
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Roelcke compactifications of ultra-transitive groups

Mathematics Subject Classification (MSC): 22F30, 22F50, 57S05

Abstract. A group G of homeomorphisms of (a linearly ordered) space X is
ultra-transitive if for any pairwise disjoint points x1, . . . , xn (x1 < . . . < xn)
and y1, . . . , yn (y1 < . . . < yn) there exists g ∈ G such that g(xi) = yi,
i = 1, . . . , n, n ∈ N.

The least admissible group topology on G is:
the permutation topology τ∂ if X is discrete;
the topology of pointwise convergence τp if X is a linearly ordered space

(the permutation topology τ∂ ≥ τp is also an admissible group topology on
G).

The usage of Ellis’s compactification of a transformation group allows to
construct the Roelcke compactification of the group (G, τ∂) and formulate
sufficient condition for the group (G, τp) to be Roelcke-precompact [1].

1. The group of homeomorphisms of a metrizable CDH compactum
for which the complement to a finite set is connected is ultra-transitive
and Roelcke-precompact in the permutation topology. But the groups of
homeomorphisms of the spheres Sn, n ≥ 2 and the Hilbert cube Q are not
Roelcke-precompact in the compact-open topology [2].

2. For a simple chain X its o-primitive automorphism groups Aut(X) is
Roelcke precompact in the topology of pointwise convergence iff it is Roelcke
precompact in the permutation topology.

3. The permutation topology is the least admissible group topology on
ultra-transitive automorphism group of a homogeneous GO-space which is
not a linearly ordered space. In particular, automorphism groups of the
Sorgenfrey line and the Michael line are Roelcke precompact. Their Roelcke
compactifications can be described.

137



4. The usage of the structure of an automorphism group of the lex-
icographically ordered product of linearly ordered homogeneous spaces (if
X = X1©X2, X1 is a regular interval, then Aut(X) ∼= Aut(X2)

X1nAut(X1),
where n denotes a semidirect product) and the results of T. Tsankov [3]
allows to find sufficient condition for the Roelcke precompactness of auto-
morphism groups of non-simple homogeneous chains. If Aut(X1), Aut(X2)
are Roelcke precompact in the permutation topology, then Aut(X) is Roel-
cke precompact in the permutation topology. In particular, this approach
allows to verify the Roelcke precompactness of the automorphism group of
the lexicographically ordered square in the permutation topology and give
description of its Roelcke compactification.
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On the connectedness of Stone-Čech remainders of locally compact
spaces

Mathematics Subject Classification (MSC): 54D05, 54D35, 54D40,
54D45

Abstract. A compactum bX is said to be a compactification of a Tychonoff
space X if there exists a homeomorphic embedding b : X → bX such that
b(X) = bX. The subspace bX \ b(X) is called a remainder of space X in
compactification bX. The following theorem is a generalization of the result
in [1].

Theorem 1. Let X be a noncompact locally compact Hausdorff space. If
for every compactum K ⊂ X there exists a compactum C(K) such that
K ⊂ C(K) ⊂ X and the subspace X \ C(K) is connected, then βX \X is
connected.

Theorem 2. For a noncompact locally compact Hausdorff space X the
following properties are equivalent:

1. βX \X is connected;

2. X has no compactification bX such that the remainder bX \ b(X) is a
two point set.

From Theorem 2 we obtain the following corollary.

Corollary. Let X be a noncompact locally compact Hausdorff space. Con-
nectedness of βX \ X is equivalent to the connectedness of all metrizable
remainders of X.
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A fuzzy extension of L-topologies

Mathematics Subject Classification (MSC): 54A40

Abstract. Given a crisp, i.e. ordinary, topological space (X, τ) and its
subset A ⊆ X, one can definitely say say whether this set is open or not. On
the other hand in the framework of fuzzy mathematical structures question
like how much this set is open ? is quite justified. Namely, with the help
of fuzzy logic rules, one can develop a model that allows one to measure
the degree to which a given property is satisfied for a given object of study.
In this talk we present a scheme that allows us to extend an L-topology
τ on a set X to an L-fuzzy topology T : LX → L on this set allowing to
associate with each L-subset A of X its degree of openness T (A) ∈ LX . We
discuss some properties of the L-fuzzy topology T , in particular, show that
T (A) = 1 for every A ∈ τ and, under some additional assumptions on L,
show relations between the degrees of openness and closeness et al. For the
convenience of the listeners, we recall the basic concepts that will be used
in the talk.

• Let (L,≤ ∧,∨) be a complete lattice with top 1 and bottom 0 elements
[1]. Given a set X its L-subset is a mapping A : X → L. Note that
in case L = {0, 1} an L-subset of a set X is just its subset and in
case L = [0, 1] an L-subset is just a fuzzy set as it is defined in the
fundamental work by Zadeh [9].

• An L-topology on a set X is a family τ ⊆ LX satisfying the analogues
of topological axioms, i.e. (1) 0X ,1X ∈ τ , (2) τ is closed under finite
intersection, i.e. A1, . . . An ∈ τ =⇒

∧n
i=1Ai ∈ τ (3) τ is closed under

arbitrary unions, i.e. {Ai | i ∈ I} ⊆ τ =⇒
∨
i∈I Ai ∈ τ [2], [3].
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• An L-fuzzy topology on a set X is a mapping T : LX → L sat-
isfying fuzzy analogues of a topology, i.e. (1) T (1X) = T (0X) =
1, (2) T (

∧n
i=1Ai) ≥

∧n
i=1 T (Ai) for any A1, . . . An ∈ LX and (3)

T (
∨
i∈I Ai) ≥

∧
i∈I T (Ai) for any {Ai | i ∈ I} ⊆ LX [5], [7], [8].

• A residuated lattice is a complete lattice enriched with a pair of binary
operations: ∗ : L × L → L and 7→: L × L → L related by Galois
connection i.e. a ∗ b ≤ c ⇐⇒ a ≤ b 7→ c ∀a, b, c ∈ L [6]. Important
pairs of such operation in case L = [0, 1] are the following three a ∗
b = a ∧ b (minimum t-norm), a ∗ b = a · b ( product t-norm) and
a ∗ b = max{a+ b− 1, 0} ( Lukasiewicz t-norm) and the corresponding
residua 7→, see e.g. [4]. Operation ∗ in fuzzy logic is interpreted as
conjunction and 7→ as implication. In case L = {0, 1} they indeed
reduce to ordinary logical conjunction & and implication ⇒.
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Game-theoretic results in regards to cardinal functions

Mathematics Subject Classification (MSC): 54A25, 91A44, 54D10

Abstract. In 1970, Arhangel’skii asked whether for every compact space X,
wL(Xδ) ≤ 2ℵ0 ; and Bell, Ginsburg and Woods posed the following question
in 1978: is there a regular space such that |X| ≤ 2χ(X).wL(X)? Since then, a
negative answer has been given to the first question as well as some partial
answers to the second one. We provide a few results and examples related
to these questions and their answers through the use of topological games.
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Ideal version of the Fréchet–Urysohn property

Mathematics Subject Classification (MSC): 40A35, 54G15, 26A03

Abstract. We consider the ideal version of the Fréchet–Urysohn property
of a space of continuous functions. We show its role in a solution [1] to
the problem posed by J. Gerlits and Zs. Nagy [2] and to two problems by
M. Sakai [3, 4].

Acknowledgements: The present work was supported by the Slovak Re-
search and Development Agency under the Contract no. APVV-20-0045.
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Totally imperfect Menger sets

Mathematics Subject Classification (MSC): 54D20, 03E17

Abstract. A set of reals X is Menger if for every sequence of open covers
U0,U1, . . . there are finite families F0 ⊆ U0,F2 ⊆ U2, . . . such that the family⋃
n∈ω Fn is a cover of X. Any set of reals of cardinality smaller than the

dominating number d is Menger and there is a non-Menger set of cardinality
d. By the result of Bartoszyński and Tsaban, in ZFC, there is a totally
imperfect (with no copy of the Cantor set inside) Menger set of cardinality
d. We discuss a problem, whether in ZFC there is such a set of cardinality
continuum.
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On the Ellis–Numakura Lemma, Free Idempotent Ultrafilters on
ω and Choice

Mathematics Subject Classification (MSC): Primary 03E25;
Secondary 03E35, 54D30, 54D80, 54H11, 54H20

Abstract. I will discuss, in set theory without the Axiom of Choice (AC),
the open problem of the deductive strength of the following two statements:

(1) The Ellis–Numakura Lemma (ENL): “Every compact Hausdorff right
topological semigroup has an idempotent element”;

(2) “There exists a free idempotent ultrafilter on ω”.

The chief motivation for investigating this intriguing open problem stems
from the fact that the above two consequences of AC are (famously known
to be) strongly related to Hindman’s Theorem: “For any finite colouring of
ω, there exists an infinite set H ⊆ ω such that the set FS(H) = {

∑
x∈F x :

F ∈ [H]<ω \ {∅}} is monochromatic”, which is a cornerstone of the Ramsey
theory of numbers and, as shown by W.W. Comfort [2], it is also provable
without invoking any choice principle.

Typical results that will be presented are:

(a) ENL for well-orderable semigroups is provable in ZF (i.e. Zermelo–
Fraenkel set theory without AC).

(b) ENL for Loeb semigroups is provable in ZF.

(c) The Boolean Prime Ideal Theorem (BPI) implies ENL, and thus ENL
is not equivalent to AC in ZF.

(d) In ZFA (i.e. ZF with atoms), the Axiom of Multiple Choice (MC)
implies ENL restricted to abelian semigroups, or to linearly orderable
semigroups.
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(e) ENL does not imply MC in ZF (or in ZFA).

(f) “The Cantor cube 2R is compact and a Loeb space” (which, in ZF, is
strictly weaker than BPI restricted to R) implies (2) and the implica-
tion is not reversible in ZF.

The presentation will be based on results from Tachtsis [11].
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Hartman–Mycielski construction and minimally almost periodic
groups

Mathematics Subject Classification (MSC): 54H10, 54H11

Abstract. A topological group G is minimally almost periodic if every
continuous homomorphism of G to a compact Hausdorff topological group is
trivial. According to [NW], there exist countable discrete minimally almost
periodic groups. These groups are necessarily infinite and non-Abelian.

We present another source of minimally almost periodic topological (Abe-
lian) groups. In 1958, S. Hartman and J. Mycielski constructed a functorial
embedding of any topological group G into a connected, locally connected
topological group, G•. Elements of the group G• are the so-called step-
functions from the half-open interval [0, 1) to G. Endowed with an appro-
priate topology, G• becomes a topological group containing G as a closed
topological subgroup.
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Theorem. For every topological group G, the group G• is minimally almost
periodic.

Therefore, if G is a compact topological (Abelian) group with |G| > 1,
then G• is a connected, locally connected minimally almost periodic topolog-
ical (Abelian) group which is algebraically generated by a compact connected
subset.
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On the degree of connectedness of compact sets

Mathematics Subject Classification (MSC): 54D30, 54F45

Abstract. We consider compact metric spaces. The n-dimensional diame-
ter of a space X is the infimum of all δ > 0 such that X admits a δ-map onto
a space of dimension n (here, by a dimension, we mean we the covering di-
mension dim). Recall that if P,Q are closed subsets of X, then a partition of
X between P and Q is a closed set C ⊂ X such that X\C = UP ∪UQ, where
UP and UQ are disjoint open subsets of X containing P and Q, respectively.

The following notion was introduced by Alexandroff: Two closed disjoint
subsets P and Q of X are said to be V n-connected if there exists ε > 0 such
that the (n− 2)-dimensional diameter of any partition C between P and Q
is ≥ ε.

For any open cover ω of a space X, let Nω be the nerve of ω and
πω : X → Nω be the natural map. In this talk we provide the following
result:
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Let dimX = n and P,Q be closed disjoint sets in X with non-empty inte-
riors. Then P are Q are V n-connected in X if and only if there is an open
cover ω of X such that the sets πω(P ) and πω(Q) are V n-connected in Nω.
Some corollaries will be also discussed.
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Asymptotic dimension of hyperbolic, geodesic, proper,
quasi-cobounded spaces

Mathematics Subject Classification (MSC): 51F30, 54F45

Abstract. There is a well-known theorem utilizing asymptotic dimension in
geometric group theory, proven by S. Buyalo and N. Lebedeva, which states
that for a hyperbolic group G, the equality asdim G = dim(∂G) + 1 holds.
More generally, Buyalo and Lebedeva show that the same equality is true
for metric spaces which are hyperbolic, geodesic, proper and cobounded.

We will show that Buyalo–Lebedeva’s theorem can be further general-
ized to hyperbolic, geodesic, proper and quasi-cobounded spaces. Quasi-
coboundedness of a metric space X means that there is a constant R > 0
and a uniform collection A of quasi-isometries of X such that for any chosen
base point o ∈ X, and for any x ∈ X, there is a g ∈ A so that g(x) ∈ B(o,R).
As a consequence, the equality mentioned above is also true for hyperbolic
approximate groups.
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Nadia González-Garćıa, Lucero Pacheco and
Roberto Velasco-Segura
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Persistent homology: an application to functional brain networks

Mathematics Subject Classification (MSC): 55N31

Abstract. Persistent homology is a powerful tool from algebraic topology
that enables the computation of topological features while keeping track of
them along different scales. It has been widely applied to data analysis,
including point cloud data, complex networks, images, etc.

In this talk, I will give an overview of persistent homology, describe a
pipeline of how this tool is commonly used to analyze data and present a
specific application in the analysis of functional brain networks. This appli-
cation is based in a work where we have focused on the study of individu-
als with an inhalant substance abuse disorder using resting-state functional
Magnetic Resonance Imaging (rs-fMRI).
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Finitely supported functionals vs linear and general ones

Mathematics Subject Classification (MSC): 54C35

Abstract. For given a Tykhonoff space X we call a functional any contin-
uous function f : Cp(X) → R which maps the zero-function 0X to 0. We
denote the subspace of all functionals in CpCp(X) by C0

pCp(X).

We call a functional finitely supported or a functional with a finite support
if there exists a finite subset K ⊂ X, such that the following two conditions
hold:

(fs 1) For any positive ε, any ϕ ∈ Cp(X), there exists a positive δ such
that if ψ ∈ Cp(X) and |ϕ(x)−ψ(x)| < δ for all x ∈ K, then |f(ϕ)−f(ψ)| < ε;

(fs 2) There exists a positive ε, such that for each x ∈ K, each its
neighborhood U one can find two functions ϕx, ψx ∈ Cp(X) which coincide
out of U , but |f(ϕx)− f(ψx)| > ε.

Let us denote by L̂p(X) the subspace of those finitely supported func-
tionals f which satisfy

(I) If f(ϕ) 6= 0 then there exists n0 ∈ N such that |f(n · ϕ)| > 1 for all
n > n0;

(II) If |f(n · ϕ)| > 1 for some n ∈ N then f(ϕ) 6= 0.

It is known [1] that if the spaces Cp(X), Cp(Y ) are linearly homeomorphic
then Lindelöf numbers of X, Y are equal: l(X) = l(Y ).

The linearity of a homeomorphism h : Cp(X) → Cp(Y ) is equivalent
to the inclusions h∗(Y ) ⊂ Lp(X) and (h−1)∗(X) ⊂ Lp(Y ). Replacing in

this sentence Lp by L̂p we obtain the definition of some new class H of
homeomorphisms of function spaces.

Theorem 1. [2] If h : Cp(X)→ Cp(Y ), h ∈ H then l(X) = l(Y ).

The theorem just formulated inspires the question about comparison of
the spaces Lp(X), L̂p(X), FS(X), C0

pCp(X). Here FS(X) is the subspace
of all finitely supported functionals.
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It is evidently from the definitions that the chain written above is in-
creasing and the first two inclusions are strong. Moreover, it is well known
that Lp(X) is closed in C0

pCp(X). Now we claim
Theorem 2. (a) [3] FS(X) 6= C0

pCp(X);
(b) FS(X) is dense in C0

pCp(X);
(c) Lp(X) is nowhere dense in C0

pCp(X);

(d) L̂p(X) is not nowhere dense in C0
pCp(X).
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[1] Bouziad A. Le degré de Lindelöf est l-invariant // Proc. Amer. Math.
Soc. 2001, V. 129 №3 P. 913 – 919.

[2] Lazarev V.R. On a class of homeomorphisms of function spaces preserv-
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Local structure of homogeneous ANR-spaces

Mathematics Subject Classification (MSC): 54C55, 55M15

Abstract. The importance of finite-dimensional homogeneous ANRs is
based on the well known Bing-Borsuk conjecture stating that every homo-
geneous ANR compactum of dimension n is an n-manifold. It seems that
this conjecture is still open. Because of that it is interesting to investigate to
what extend finite-dimensional homogeneous locally compact ANR-spaces
have common properties with Euclidean manifolds. In the present talk
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the local structure of homogeneous ANR-spaces is described. Using that
description, we provide a positive solution of the problem whether every
finite-dimensional homogeneous metric ANR-compactum X is dimension-
ally full-valued, i.e. dimX×Y = dimX+ dimY for any metric compactum
Y .
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Perfectly meager sets in the transitive sense and the Hurewicz
property

Mathematics Subject Classification (MSC): 54D20, 03E17

Abstract. We work in the Cantor space with the usual group operation +.
A set X is perfectly meager in the transitive sense if for any perfect set P
there is an Fσ-set F containing X such that for every point t the intersection
F ∩ (t+P ) is meager in the relative topology of t+P . A set X is Hurewicz
if for any sequence U0,U1, . . . of open covers of X, there are finite families
F0 ⊆ U0,F1 ⊆ U1, . . . such that the family {

⋃
Fn : n ∈ ω} is a γ-cover

of X, i.e., the sets {n : x /∈
⋃
Fn} are finite for all points x ∈ X. Nowik

proved that each Hurewicz set which cannot be mapped continuously onto
the Cantor set is perfectly meager in the transitive sense. We present results
related to the question, whether the same assertion holds for each Hurewicz
set with no copy of the Cantor set inside.

Acknowledgements: The research was funded by the National Science
Centre, Poland and the Austrian Science Found under the Weave-UNISONO
call in the Weave programme, project: Set-theoretic aspects of topological
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An Introduction to Topological Data Analysis with an Example in
Social Networks

Mathematics Subject Classification (MSC): 62R40, 55N31

Abstract. As artificial intelligence improves, the detection of non-human
users in social networks becomes a more difficult task. While not all non-
human social network users are harmful, many are programmed to spread
disinformation or cause civil unrest. Thus, determining whether a social
network user is human is an important task. In this talk, we provide an
introduction to topological data analysis and provide preliminary results on
how these methods could be used to detect non-human users in Twitter.
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On the lower-semi-continuity of the fundamental group

Abstract. The Gromov-Hausdorff distance on the class of compact metric
spaces quantifies how far two metric spaces are from being isometric. The
only topological feature that presents good behavior with respect to this dis-
tance is the fundamental group; it is in some sense lower-semi-continuous.
I will present the problem of generalizing this property to non-compact
Gromov-Hausdorff convergence and how with certain forms of symmetry,
such lower-semi-continuity can be recovered.
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On topology of spaces of persistence diagrams

Mathematics Subject Classification (MSC): 54E35, 55N31

Abstract. Persistence homology and persistence diagrams are important
tool in the Topological Data Analysis. Metric spaces of persistence diagrams
are objects of consideration in numerous publications (see, e.g., [1]-[6]). In
particular, it is shown in [6] that methods of infinite-dimensional topology
are useful for description of topology of spaces of persistence diagrams. The
talk is devoted to extensions and generalizations of results from [6].
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On ωNT
-limit sets of discrete dynamical systems

Mathematics Subject Classification (MSC): 37B02, 37B20, 37E05,
37H99

Abstract. In the year 2016 in [1] Wen Huang, Danylo Khilko, Sergii
Kolyada and Guohua Zhang introduced the concept of ωNT -limit sets and
transitive compactness. In this talk I focus on the properties of ωNT -limit
sets, their similarities and differences to standart ω-limit sets and show that
if we restrict ourselves to interval mappings, then transitive compactness
and weakly mixing are equivalent.
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Commutators on generalized power series spaces over
non-Archimedean fields

Mathematics Subject Classification (MSC): 26S10, 47S10, 46A35

Abstract. By a non-Archimedean field we mean a non-trivially valued
field K which is complete under the metric induced by the valuation | · | :
K → [0,∞) with the strong triangle inequality: |α + β| ≤ max{|α|, |β|}
for all scalars α, β ∈ K. The generalized power series spaces Df (a, r) over
non-Archimedean fields are the most known and important examples of non-
Archimedean nuclear Fréchet spaces. The commutator of a pair of operators
A and B on a locally convex space E is given by [A,B] := AB − BA. An
operator T on E is said to be a commutator if T can be expressed in the
form T = [A,B] for some operators A and B on E.

We prove among other things the following:
(I) Every operator on Df (a, r) is a commutator, if (1) r ∈ {0,∞} and

supn[a2n/an] < ∞ or (2) r ∈ (−∞, 0) ∪ (0,∞), limn[a2n/an] = 1 and f is
rapidly increasing.

(II) If limn[an+1/an] =∞ and an operator T on Df (a, r) is a commutator,
then T is bounded. In particular, the identity operator on Df (a, r) is not a
commutator, if limn[an+1/an] =∞.

156
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Completeness-type properties of hyperspace topologies

Mathematics Subject Classification (MSC): Primary 54B20;
Secondary 46A17, 54E50, 54E52, 91A44

Abstract. The purpose of the talk is to present some new completeness-type
results concerning the hyperspace CL(X) of the nonempty closed subsets of
a metric space (X, d) endowed with functional type hypertopologies such as
the Hausdorff metric topology, the Attouch-Wets topology and, in general,
the topology of bornological convergence. The properties considered include
Čech-completeness, α-favorability, Baireness.
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The gluing problem in General relativity

Abstract. In this talk will discuss the gluing problem for hyperbolic equa-
tions along characteristic hypersurfaces. We will cover both the linear case
of the wave question and the nonlinear case of the Einstein equations.

This is joint work with Stefan Czimek (Leipzig) and Igor Rodnianski
(Princeton).
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Remarks on a dicotomy for the remainder of a topological group

Abstract. Following Arhangel’skĭı, we discuss a possible dicotomy for
the remainder in the compactification of a topological group involving the
Menger property.
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Quasi alpha (quasi-α) convergence

Abstract. We introduce and study the notion of quasi-α convergence for
sequences of functions. We give some examples which distinguishe the quasi-
α convergence from Semi-α, pointwise and α convergence. Using the notion
of quasi exhaustiveness we can describe the relation between pointwise con-
vergence and quasi-α convergence for a sequence of functions. Finally we
give a characterization of a pseudocompact space using quasi-α convergence.
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Some Notes on Connectedness in point-free topology

Abstract. We look at the notion of connectedness in sigma-frames and
its extensions to uniformity and metrizability. We provide a construction
of the uniformly locally connected reflection of a locally connected metric
sigma-frame.
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A universal hyperspace for posets

Mathematics Subject Classification (MSC): 54B20, 54C25, 54D10,
54D35

Abstract. Finite topological spaces have recently gained interest due to the
development of computational and applied topology in recent years. Tech-
niques such as persistent homology allow for improved detection of structures
in noisy datasets compared to other methods. In this talk, we will introduce
a space (or rather, a hyperspace) as the universal topological space for all
finite (and Alexandroff) spaces, and study its properties. In particular, this
space allows for comparison of finite spaces and their sequences, resulting
in a universal space for certain algebraic topological properties of compact
metric spaces.
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[3] D. Mondéjar, Polyhedral expansions of compacta associated to finite ap-
proximations, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116
(2022).

Mishchenko A.S.
Lomonosov Moscow State University
e-mail: asmish-prof@yandex.ru

Cohomology with fragmented finite supports
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