

ESTIMATION OF SERUM UREA

Urea

- Urea is the highest non-protein nitrogen compound in the blood.
- Urea is the major excretory product of <u>protein metabolism</u>.
- It is formed by **urea cycle** in the liver from **free ammonia** generated during protein <u>catabolism</u>.
- Since historic assays for urea were based on measurement of nitrogen, the term **blood urea**

nitrogen (BUN) has been used to refer to <u>urea determination</u>.

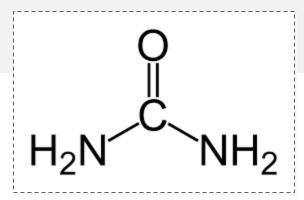


Figure 1. Chemical structure of urea

Urea synthesis

- Protein metabolism produces amino acids that can be oxidized.
- This result in the release of ammonia which is converted to urea (via urea cycle) and excreted as a waste product.
- Following synthesis in the liver, urea is carried out in the blood to the kidney which is readily filtered from the plasma by glomerulus.
- Most of the urea in the glomerular filtrate excreted in the urine, and **some** urea is reabsorbed through the renal tubules.
- The amount reabsorbed depends on **urine flow rate** and **extent of hydration** (the amount of urea reabsorbed increases with dehydration).

Dehydration → ↓ **Urine Flow** → **Concentrated Urine** ↑ **Urea reabsorption**

The concentration of urea in the plasma is determined by:

- 1. Renal and liver function
- 2. The protein content in diet
- 3. The rate of protein catabolism

Urea synthesis

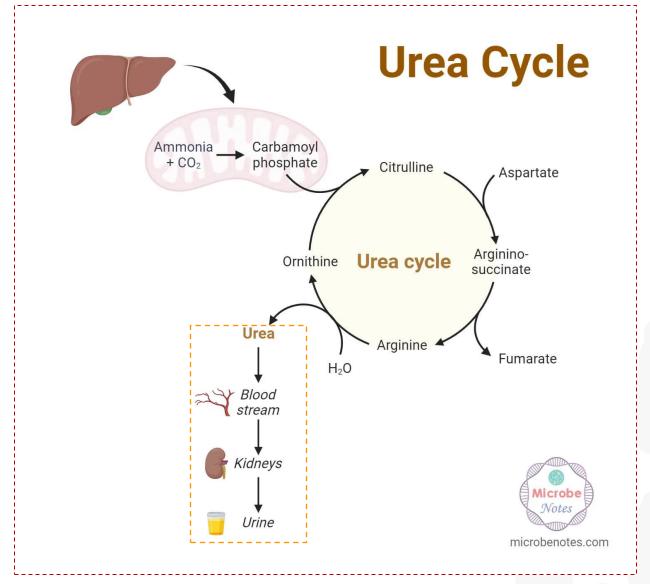
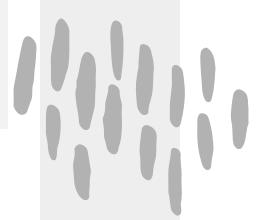



Figure 2. Urea cycle

Clinical Application

Measurement of urea used to in:

- Evaluate renal function
- To assess hydration status
- To determine nitrogen balance
- To aid in the diagnosis of renal diseases
- To verify adequacy of dialysis
- Check a person's protein balance

Plasma urea Concentration

- 1. Measurement of Blood Urea Nitrogen (BUN) alone is <u>less useful</u> in diagnosing kidney diseases because it's blood level is influenced by <u>dietary protein and hepatic function</u> (*why*?).
- 2. But its diagnostic value improves with **serum creatinine values**.

	Туре	Cause	Note
High urea (High urea concentration in plasma is called uremia) (Uremia vs Azotemia)	Pre-renal	 Cognitive heart failure Dehydration High protein diet Increased protein catabolism 	■ Cognitive heart failure → reduced renal blood flow, less blood is delivered to kidney, then less urea is filtered
	Renal	Renal failure	
	Post-renal	 Urinary tract obstruction 	
Low urea		Low protein intakeLiver diseasePregnancy	

Urine urea Concentration

- The Urine Urea Nitrogen test (UUN) determines <u>how much urea is in the urine</u> to assess the amount of <u>protein breakdown</u>.
- The test can help determine how well the kidneys are functioning, and if the intake of protein is too high or low.
- Specimen: The urine urea nitrogen test is performed by collecting a 24-hour urine sample.

	Cause	
High urea in urine	Too much protein in the diet.Too much protein breakdown in the body.	
Low urea in urine	Malnutrition.Too little protein in the diet.Kidney issues.	

Reference Value

SPECIMEN	UREA NITROGEN	UREA
Serum/Plasma	5-23 mg/dL	10-50 mg/dL
Urine 24 h	9-16g/24h	20-35 g/24 h

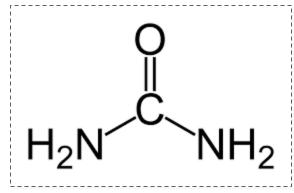


Figure 3. Chemical structure of urea

Practical Part

Objectives:

Estimation of blood urea nitrogen (BUN).

Principle (of the used kit):

The Reagent used contains: Urease, Glutamate Dehydrogenase, NADH, 2-oxoglutarate, buffers and stabilizers.

1. Reaction one: Urea is hydrolysed in the presence of <u>urease enzyme</u> and water to yield ammonia and carbon dioxide.

$$NH_2 - CO - NH_2 + H_2O$$

$$Urease$$

$$Urease$$

$$Urease$$

$$VH_3 + CO_2$$

2. Second reaction: The ammonia reacts with 2-oxoglutarate and reduced nicotinamide adenine dinucleotide (NADH) in the presence of glutamate dehydrogenase (GLDH) to yield glutamate and nicotinamide adenine dinucleotide (NAD).

$$2NH_3 + 2$$
-oxoglutarate + $NADH+H^+$ Glutamate + NAD^++H_2O

The amount of the **urea** in the sample is <u>proportionally</u> related to the <u>reduced absorbance at 340 nm</u> as a result of **NADH oxidation** to NAD.

Materials:

Stanbio urea nitrogen (BUN) liquid-UV procedure

Method:

	Standard	Serum			
Working reagent	1ml	1ml			
Pre-warm at 37°C for 3 min. and add:					
Standard	0.01/10µ1	-			
Serum	-	0.01/10μ1			

- 1. After exactly 30 seconds, read and record absorbance A_1 against distilled water at 340 nm.
- 2. At exactly 60 seconds after A_1 , read and record the absorbance A_2 and determine ΔA (A_1 - A_2).

Calculations of the Results:

-Serum BUN (mg/dL) = Δ A (Sample) x Std. Conc. (30mg/dL) Δ A (Standard) -Serum urea (mg/dL) = BUN x 2.14

References

- Clinical Chemistry: Techniques, Principles, Correlations (Bishop, Clinical Chemistry)Mar 31, 2009,by Michael L. Bishop MS MT (ASCP) CLS (NCA) and Edward P. Fody MD
- Urea nitrogen urine test: MedlinePlus Medical Encyclopedia. (2025, Feb 13). Retrieved from https://medlineplus.gov/ency/article/003605.htm