BCH 472 [Practical]

IDENTIFICATION AND QUALITATIVE ANALYSIS OF RENAL CALCULI

1

Renal Calculi

- Kidney stones, renal calculi or renal lithiasis (stone formation) are small, hard deposits that form in the urinary system.
- The stones are made of **mineral** and **acid salts**.
- Kidney stones have many causes and <u>can affect any part of your urinary tract</u> (kidneys, ureters, bladder, and urethra).
- It is a common cause of **blood** in the urine and **pain** in the abdomen,

flank, or groin.

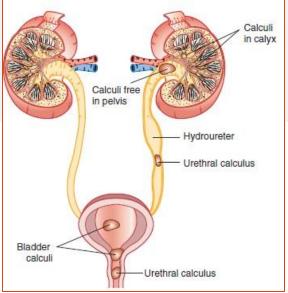


Figure 1. Location of calculi in the urinary tract

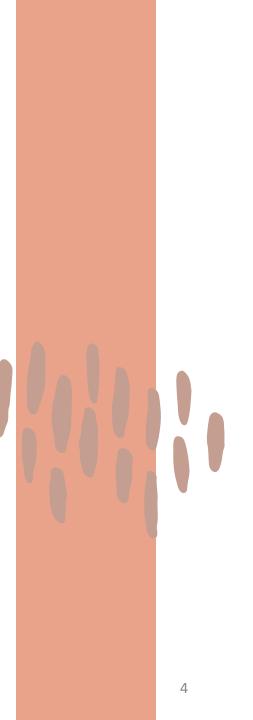
Pathogenesis of renal stones :

There are two basic aspects in the pathogenesis of renal stones:

- 1. Increased urinary excretion of stone forming elements: like calcium, phosphorus, uric acid, oxalate, and cysteine.
- 2. Low fluid intake: a low fluid intake results in the production of **concentrated urine**, causing super-saturation and crystallisation of stone-forming compounds. (*In addition, low urine flow rates favour crystal deposition on the urothelium*).

Note: Cystine stones formed only when its concentration increased in the urine.

3. Other: Physio-chemical changes which influence stone formation like: pH of urine, stone matrix, and protective substances in the urine.


Risk factors

1. Low fluid intake:

- The single **most important** determinant of stone formation is <u>low fluid intake</u>.
- A low fluid intake results in the production of <u>concentrated urine</u>.

Low fluid intake \rightarrow Concentrated urine \rightarrow Deposition of mineral and salts \rightarrow Kidney stones

- 2. High salt diet.
- 3. Repeating, or recurrent, urinary tract infections.
- 4. Blockage of the urinary tract.

Investigation of Renal Calculi:

1- Urine analysis and Urine culture:

It may show crystals, red blood cells, and/or pus cells in urine.

2- Stone analysis:

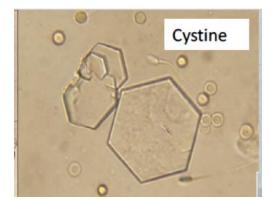
- Chemical analysis of stones (*simple test but is not an accurate*).
- Crystallography (*more accurate method*).

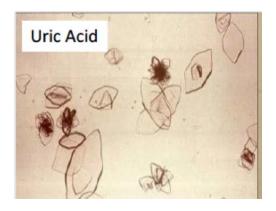
3- Biochemical investigations:

- Serum calcium, phosphorus, uric acid, and renal function tests (RFT).
- 24-hour urine for calcium, phosphorus, uric acid, oxalate, citrate, and cystine.
- Investigations for special clinical situations like hyperparathyroidism, gout, should also be included.

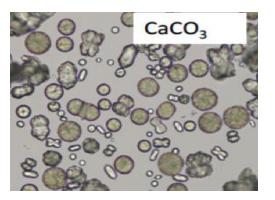
The main objectives in investigation are to find out :

- 1. The **composition** of stones.
- **2. Cause** of stone formation.
- **3. Functional status** of kidney.
- 4. Presence/absence of **obstruction** in urinary tract.
- 5. Evidence of possible **urinary infection**.


Types of Calculi


There are four basic types of kidney stones:

- **1.** Calcium stones \rightarrow calcium oxalate and calcium phosphate.
- 2. Uric acid stones.
- 3. Struvite stones (*magnesium ammonium phosphate*), also known as triple phosphate stone.
- 4. Cystine stones.
- Most kidney stones (70% to 80%) are calcium stones calcium oxalate, calcium phosphate, or a combination of the two materials.
- \blacktriangleright A patient can have <u>one or a combination</u> of these stones.


Types of Calculi

Stone type and composition	Contributing factors	Notes
Calcium stones 1. Calcium oxalate. 2. Calcium phosphate.	 Hyperparathyroidism. Hypercalcemia and Hypercalciuria. Hyperoxaluria (some food eg. spinach, beets and large doses of Vitamin C may increase the amount of oxalate in your urine). Vitamin D toxicity. 	 Calcium oxalate stones are more common. Calcium phosphate stones are caused by the combination of high urine calcium and alkaline urine (because phosphate level increase in alkaline urine). Carbonate apatite is one kind of calcium phosphate stones, and commonly consider as infection marker.
Uric acid stones (<mark>Urate</mark>)	 Form in acid urine with pH around 5. Gout. High purine diet. Excessive urinary uric acid. 	 Can treated by: Increase fluid intake. Alkalinization of the urine.
Struvite stones (magnesium ammonium phosphate stones)	 Urea-splitting urinary tract infection UTIs (Some urinary bacteria can split the urea in urine to form ammonium and also to make urine less acidic). 	 They can also be called infection stones if they occur with urinary tract infections (UTIs). Can treated by: Increase fluid intake. Acidification of the urine
Cystine stones	 Develop in patients with cystinuria (inherited disorder) ? 	 Less common. Can treated by: Increase fluid intake. Alkalinization of the urine.

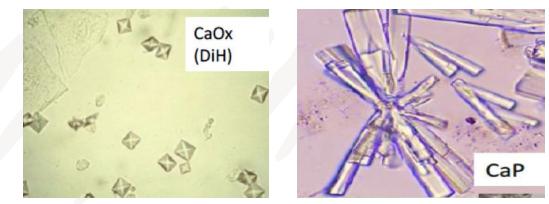
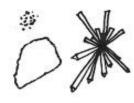
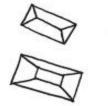
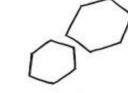



Figure 2. Different shapes of kidney stones


Stones crystals shape



Calcium oxalate

Calcium phosphate

Cystine

Triple phosphate

Objectives:

• Identification and qualitative analysis of renal calculi.

General Principle:

• Each test based on the chemical properties of the stone-forming substance.

Experiments:

- 1. Test for uric acid.
- 2. Test for carbonate.
- 3. Test for oxalate.
- 4. Test for phosphates.
- 5. Test for calcium.
- 6. Test for magnesium.

(1) Test for Uric acid:

Principle:

Uric acid undergoes oxidation when treated with HNO₃.

Method:

- 1. Take a small amount of the sample.
- 2. Add 5-7 drops of concentrated nitric acid (*Carefully*).
- 3. Heat in a water bath.

 \rightarrow (The positive result is yellow to orange color on the inner surface of the test tube)

(2) Test for carbonate:

Principle:

 $2 \operatorname{HCl} + \operatorname{CaCO}_3 = = \operatorname{CaCl}_2 + \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2$

Method:

1- Add 0.5 ml con. hydrochloric acid to a small portion of the sample (*Carefully*).

 \rightarrow (Gas bubbles will indicate the presence of carbonate).

(3) Test for oxalate:

Principle:

In sulfuric acid solution, oxalate combines with hydrogen to form oxalic acid.

 $2 \text{ MnO}_4^- + 5 \text{ H}_2\text{C}_2\text{O}_4 + 6 \text{ H}^+ \rightleftharpoons 2 \text{ Mn}^{2+} + 10 \text{ CO}_2 + 8 \text{ H}_2\text{O}$ Purple color oxalic acid Colourless

Method:

- 1. Heat a part of the sample with 2 ml diluted sulphuric acid $(2M H_2SO_4)$ for 1 min.
- 2. Add 2 drops (*one by one*) of potassium permanganate (KMnO₄) solution and mix.
- \rightarrow (The decolorization of potassium permanganate will confirm the presence of oxalate).

(4) Test for phosphates:

Principle:

Phosphate ions react with ammonium molybdate to produce a characteristic yellow precipitate of <u>ammonium</u> <u>phosphomolybdate</u>.

Method:

- 1- Dissolve a little of the sample in about 1.5 ml of concentrated nitric acid HNO₃.
- 2- Add an equal volume (1.5 ml) of ammonium molybdate solution.
- 3- Heat to boiling water bath.

→ (If phosphates are present, a yellow precipitate of ammonium phosphomolybdate is obtained).

(5) Test for calcium:

Principle:

Calcium is precipitated as <u>calcium oxalate</u> using ammonium oxalate.

Method:

- 1- Dissolve small amount of the sample by heating with 2 ml dilute hydrochloric acid (2M HCL).
- 2- Add 1 ml ammonium oxalate.
- \rightarrow (A white precipitate of calcium oxalate shows the presence of calcium).

(6) Test for magnesium:

Principle:

The combination between titan yellow and **magnesium hydroxide** to produce an orange colour.

Method:

1- On a few amount of magnesium, add 1ml of titan followed by 1 ml potassium hydroxide (*to be strongly alkaline*).

 \rightarrow (An orange to red color indicates the presence of magnesium).

Results:

Component	Observation	Type pf stone/s
Uric acid		
Carbonate		
Oxalate		
Phosphate		
Calcium		
Magnesium		

Discussion:

- Comment on each result you obtained and mention whether the sample contains these component or not?
- What type of stone can be formed by each substance.
- Explain the possible causes of each type

References

- Pooler C. Porth Pathophysiology: Concepts of Altered Health States. Lippincott Williams & Wilkins. 2009. p. 699.
- Hesse A. Urinary Stones: Diagnosis, Treatment, and Prevention of Recurrence. Karger Medical and Scientific Publishers, 2009. p.86.
- National Cancer Institute (NCI): http://www.webmd.com/kidney-stones/tc/types-of-kidney-stonestopic-overview
- Medical Aspects of Renal Stones, REVIEW ARTICLE, KK Malhotra, 2008.