

QUANTITATIVE PROTEIN ESTIMATION OF URINE

BCH 472 [Practical]

Introduction

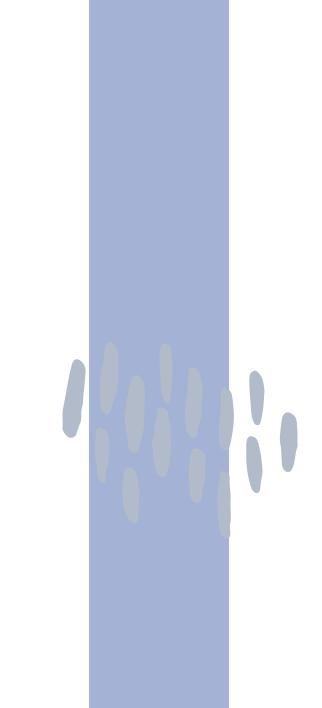
- In a healthy renal and urinary tract system, the urine contains <u>no</u> protein or only <u>trace</u> amounts.
- The presence of increased amounts of protein in the urine can be an important indicator of <u>renal disease</u>. It may be the <u>first sign</u> of a serious problem and may appear <u>before any other clinical symptoms</u>.
- However, there are other physiologic conditions (eg, exercise, fever) that can lead to increased protein excretion in urine.
- Also, there are some <u>renal disorders</u> in which proteinuria is <u>absent</u>.

Proteinuria

- Proteinuria means protein in urine.
- Protein in normal urine should be less than 150 mg/L.
- **Proteinuria** is defined as urinary protein excretion of greater than 150 mg per day (per one liter).
- High concentrations of protein cause <u>frothy or sudsy urine</u>.
- Although proteinuria is usually benign, the condition can be a marker for a serious underlying <u>renal disease</u> or <u>systemic disorder.</u>

Notes:

- 1. Dipsticks (is the most common <u>initial</u> screening test for proteinuria) can only detect around 150 mg/L of <u>albumin</u>.
- \rightarrow The dipstick will <u>not</u> detect non-albumin proteins.
- 1. /L = /24-hour = /day [for normal, because the average normal output per day is 1000 ml or 1L]

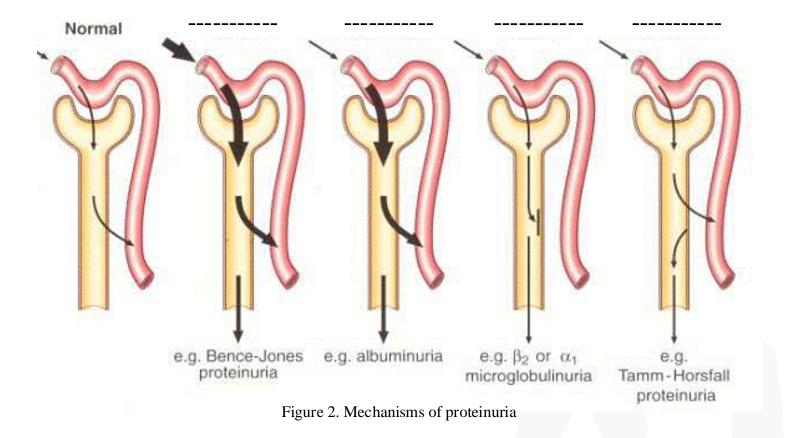

Types of Proteinuria as related to the cause:

Some of the causes of proteinuria are:

- 1. Primary kidney disease called nephritis.
- 2. Secondary kidney disease due to:
 - Diabetes
 - Hypertension
 - Cancer
 - Pregnancy
 - Medications

3. Other:

Acute infection


Mechanisms of proteinuria

Туре	
Glomerular proteinuria (<i>Filtration</i>)	 Cause: due to <u>glomerular disease</u> and abnormal permeability of the <u>glomerular capillaries</u> to protein lead to <u>increased filtration</u> of normal plasma protein and because albumin has the <u>highest concentration in the plasma</u> it is called abuminuria eg. Malignant hypertension, Glomerulonephritis. <i>The most common kind of proteinuria</i>.
Tubular proteinuria (Reabsorption)	 Cause: Defect in the <i>reabsorption</i> process eg, Fanconi Syndrome. Signs: Low molecular weight protein that is found in urine eg, beta-2 microglobulin. Note: The amount of proteinuria is < 2 g and dipstick may be negative.
Secretory proteinuria (Secretion)	• Cause: Over-secretion of certain proteins in the tubules, most notably the over secretion of Tamm-Horsfall proteins eg, in interstitial nephritis.

Mechanisms of proteinuria

Туре	
Overflow proteinuria	 Cause: Commonly associated with <u>increased production</u> of abnormal low molecular weight proteins (eg, light chains in multiple myeloma) i.e overflow of high plasma proteins, that exceeds the reabsorption capacity of the tubules. Signe: concentrations of low molecular weight protein found in urine.
Functional proteinuria	 Cause: Occurs when <u>increased renal blood flow</u> delivers increased amounts of protein to the nephron, eg. exercise, fever, high-output heart failure, resulting in increased protein in the urine. Note: usually < 1 g/day and reverses when renal blood flow returns to normal.

Mechanisms of proteinuria

Types of Proteinuria as Related to Quantity:

Protein amount per 24-hour	Type of proteinuria	
0.15 to 2.0 g	 Tubular proteinuria. Overflow proteinuria (an increased proportion of low molecular weight proteins). 	
2.0 to 4.0 g	 Usually glomerular. 	
> 4.0 g	• Always glomerular (<i>mainly albumin</i>).	

Protein determination

- The quantitative estimation of the daily excretion of protein is of value to the clinician in order to give a general idea of the type of renal disease (*HOW*?) its severity and to monitor the results of treatment given.
- The protein content can be determined by numerous methods, in this lab **turbidimetric method** will be used.
- Determination of total protein by measurement of protein turbidity produce by mixed with an anionic organic acid such as sulfosalicylic acid, TCA, or benzethonium chloride.
- Sulphosalicylic acid is used in this experiment to precipitate the protein in a 24 hour sample of urine.
- The turbidity is proportional to the concentration of the protein, and may be measured with a spectrophotometer at 500 nm.

Sulfosalicylic acid (SSA) test:

- The sulfosalicylic acid (SSA) turbidity test <u>quantitatively</u> screens for proteinuria.
- The advantage of this easily performed test is its greater sensitivity for proteins such as Bence Jones.
- The SSA reaction will detect globulin and Bence-Jones proteins, in addition to albumin (*although it is more sensitive to albumin*).

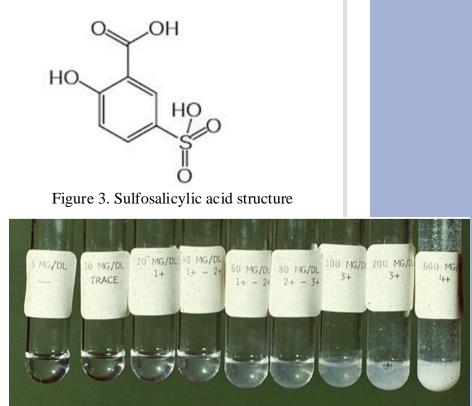
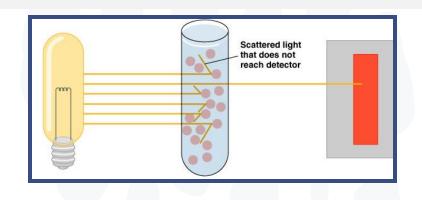


Figure 4. Protein turbidity test results

Sulfosalicylic acid (SSA) test:

Objective:


• Quantitative estimation of protein in urine by turbidimetric methods using sulfosalicylic acid.

Principle:

- Sulfosalsalyic acid is an anion(-) which neutralizes the protein cations(+) leading to its precipitation (pH in highly acidic media, the protein will be positively charged, which is attracted to the acid anions that cause them to precipitate).
- 2. Then the radiation of a wavelength which is not absorbed by the solution is made to pass through the suspension and the apparent absorption will be solely because of the scattering by the particles.
- → (The higher protein concentration, the lower transmittance value).

Increased concentration Decreased transmission

Method:

Tube	Protein Stock Solution(140 mg/dl)	0.85% Saline
1	4.5	1.5
2	3	3
3	2.4	3.6
4	1.5	4.5
5	0.9	5.1
6	0.3	5.7
7(Blank)	0	6
Urine Sample	-	-

1-Set up a series of test tube as follows, label from 1-7:

2-Set another 8 test tube labelled 1-7 and pipette in each one add 8 ml of sulfosalicylic acid :

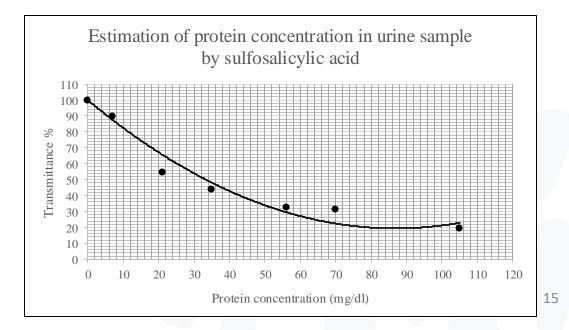
Tube	Sulfosalicylic acid
1	8 ml
2	8 ml
3	8 ml
4	8 ml
5	8 ml
6	8 ml
7(Blank)	8 ml
Urine Sample	8 ml

3- Into tube 1 pipette 2 ml of protein solution 1 (that you prepared before), into tube 2 pipette 2 ml of protein solution 2 etc. For the Urine Sample pipette 2ml of the Sample.

4-Mix contents of each tube well and allow standing for 5 minutes.

5-Using solution 7 (Blank) to set transmittance 100% at 500nm.

6-Then use solutions from 1-6, to recorded respective transmittance of each suspension.


7-Record your results.

Tube	Transmittance at 500 nm	Protein concentration mg/dl
7(Blank)	100 %	
1		
2		
3		
4		
5		
6		
Urine		
Sample		

Results:

- Plot Transmittance against Protein concentration (mg/dl).
- Read the Protein concentration of Urine Sample from the standard curve.
- Compare the result you got with the normal range of protein execration in 24 h urine specimen if you know that the protein excretion in healthy sample (0- less than 0.150g/24 h).

<u>Note</u>: Assuming that the 24 hour urine sample for the patient = 1000 ml

References:

- The Washington Manual[™]: Nephrologyby Steven Cheng, Anitha Vijayan, Katherine E. Henderson, and Thomas M. De Fer3rd edition published by Wolters Kluwer(https://www.inkling.com/read/washington-manual-nephrology-cheng-vijayan-3rd/chapter-4/approach-to-proteinuria).
- A Manual of Laboratory and Diagnostic Tests 9th edition (January , 2014), Frances T Fischbach RN, BSN, MSN By Lippincott Williams & Wilkins Publishers.
- Clinical Biochemistry, An Illustrated Colour Text 4thedition, Allan Gaw, Michael J. Murphy, Robert A. Cowan, Denis St. J. O'Reilly, Michael J. Stewart, James Shepherd.
- Zandi-Nejad K, Eddy AA, Glassock RJ, Brenner BM. Why is proteinuria an ominous biomarker of progressive kidney disease?
 Kidney Int Suppl. 2004(92):S76–S89.
- Eric P Cohen, MD Professor, Department of Medicine, Division of Nephrology, Medical College of Wisconsin; Nephrology Section Chief, Zablocki Veterans Affairs Hospital (Nephrotic Syndrome) http://emedicine.medscape.com/article/244631-overview
- BCH 472 practical note