

OSMOLALITY IN SERUM AND URINE

BCH 472 [Practical]

Osmolality and Osmolarity

- Osmolarity is the concentration of a solution in terms of osmoles of solutes per liter of solution → Expressed as (Osm/Liter).
- Osmolality is the concentration of a solution in terms of osmoles of solutes per kilogram of solvent → Expressed as (Osm/kg).
- The amount of <u>osmotically active particles</u> in a biological fluid is expressed in **osmoles**.
- 1 mol/L of NaCl corresponds to an osmolarity of 2 osmol/L (Na⁺ / Cl⁻)

Osmolality test:

The osmolality test provides a snapshot of the number of solutes present in the blood (serum), urine, or stool.

Osmometer

- Is a device used in clinical laboratories for measuring the <u>concentration of particles in a solution</u>, known as the **osmolar concentration**.
- This quantity can be expressed as **osmolality** (in Osm/kg) or **osmolarity** (in Osm/L).

Types of osmometers:

- 1. Membrane Osmometers: measure the osmotic pressure of a solution separated by a <u>semi-permeable</u> membrane.
- 2. Vapor Pressure Osmometers: determine the concentration of osmotically active particles that reduce the vapor pressure of the solution.
- 3. Freezing Point Osmometer: determine the osmotic strength of solution by utilizing freezing point depression.

Serum osmolality

- 1. Serum osmolality is primarily ordered to investigate hyponatremia (low sodium in serum).
- **2.** Normal: Adults: $280-303 \text{ mOsm/kg H}_2\text{O}$

	Cause
Higher than normal levels (hyperosmolality)	 Dehydration. Azotemia. Chronic renal disease. High sodium level (hypernatremia). Diabetes mellitus. Diabetes insipidus.
Lower than normal levels (hypoosmolality)	 Loss of sodium with diuretics and low-salt diet (hyponatremia). Syndrome of Inappropriate antidiuretic hormone secretion (SIADH). Excess hydration

Urine osmolality

- **Urine osmolality** is frequently ordered along with **serum osmolality**.
- This test helps check your body's water balance and urine concentration.
- **Osmolality** is a more exact measurement of urine concentration than the urine **specific gravity test.** *Why?*
- Normal: 24-hour: 300–900 mOsm/kg H₂O, Random: 50–1400 mOsm/kg H₂O

	Cause
Higher than normal levels (hyperosmolality)	 Dehydration. Pre-renal azotemia. Glycosuria. Syndrome Inappropriate ADH secretion (SIADH). Hyponatremia
Lower than normal levels (hypoosmolality)	 Excessive fluid intake. Diabetes insipidus. Acute renal insufficiency. Hypernatremia.

Explain how diabetes mellitus causes hyponatremia (mechanism).

References

- Osmolality blood test: MedlinePlus Medical Encyclopedia. (2025, Mar 19) Retrieved from https://medlineplus.gov/ency/article/003463.htm
- Agasti TK, Textbook of Anesthesia for Postgraduates, JP Medical Ltd .p. 238.
- Fischbach FT, Dunning MB. A Manual of Laboratory and Diagnostic Tests. Lippincott Williams & Wilkins, 2009.