Lab sheet #8 <u>Structure visualization using Jmol</u>

RCSB Protein Data Bank (RCSB PDB) enables breakthroughs in science and education by providing access and tools for exploration, visualization, and analysis of:

- 1. Experimentally-determined 3D structures from the Protein Data Bank (PDB) archive
- 2. Computed Structure Models (CSM) from AlphaFold DB and ModelArchive

These data can be explored in context of external annotations providing a structural view of biology.

 Open Protein Data Bank (PDB) website, Search for 1B0U protein; which is the <u>PDB ID</u> of ATPbinding subunit of the histidine permease from *salmonella typhimurium*.

Jmol is a free molecular viewer, used to create and view three dimensional structures of proteins.

2. Open Jmol program and open the protein sequence file (File -> Get PDB OR file -> Open)

OR

3. Change Style display from Atom style to <u>Cartoon</u> scheme style

(Click right \rightarrow Style \rightarrow Scheme \rightarrow Cartoon).

4. Open the console window, change the color of the whole structure to grey.
(Click right → Console → Type: select all → Press enter → Type: color grey → Press enter).

5. Open the protein page in **protein database** (**NCBI**) to know the different motifs of the protein and their location.

S NCBI Resources 🕑 How To 🕑	
Protein IBOU Create alert Advanced	Search
	Items: 5 Atp-Binding Suburit Of The Histidine Permease From Salmonella Typhimurium 1. 262 aa protein Accession: 180U, A Gt: 6573453 PubMed Jaxonomy GenPept Identical Proteins

6. Select the Walker A/P-loop motif (39-46), and color it by blue.

(Type: select 39-46 \rightarrow Press enter \rightarrow Type: color blue \rightarrow Press enter).

7. Select the ABC transporter signature motif (154-163), and color it to green.

(Type: select 154-163 \rightarrow Press enter \rightarrow Type: color green \rightarrow Press enter).

8. Select Walker B motif (174-179), and color it red.

(Type: select 174-179 \rightarrow Press enter \rightarrow Type: color red \rightarrow Press enter).

Elle Edit Display Yiew Tools Plugins Macros Help	
	Jmol Script Console 14.31.12 2020-10-11 08:17 Select 154-163 73 atoms selected refer selected
	s select 174-179 51 atoms selected \$ color red
	*
500 x 500 49.9/129.0	
	Editor Font Clear History State Undo Redo Close Variables Help

9. Show the ATP ligand as <u>Ball and stick</u> scheme style.

(Type: select ligand \rightarrow Press enter \rightarrow Click right \rightarrow Style \rightarrow Scheme \rightarrow Ball and stick).

10. Show which one is closest to Walker A/P-loop motif and measure the distance between

them. (Toolbar \rightarrow Click the ruler icon)

11. Change the measurement unit from **nm to Angstroms**.

(Click right \rightarrow Measurements \rightarrow Distance unites angstroms)

12. Save the protein structure as a picture. (Toolbar \rightarrow Click the camera icon)

- Open Protein Data Bank (PDB) website, Search for 1TRZ protein; which is the PDB ID of Human Insulin hexamer.
- 2. Change Style display from Atom style to <u>Cartoon</u> scheme style.

(Click right \rightarrow Style \rightarrow Scheme \rightarrow Cartoon).

Prepared by: Imtinan Alkhudair 2023

3. Change Style display to <u>Backbone 1.5</u> scheme style.

(Click right \rightarrow Console \rightarrow Type: Backbone 1.5 \rightarrow Press enter).

4. Turn cartoon style off. (Type: cartoon off → Press enter)

5. Select sheets and color it green.

(Type: select sheets \rightarrow Press enter \rightarrow Type: color green \rightarrow Press enter)

6. Select helix and color yellow.

(Type: select helix \rightarrow Press enter \rightarrow Type: color yellow \rightarrow Press enter)

7. Show cysteins (Sulfur) that forms disulphide bridges "showing how the polypeptides hold together through S-S bonds". Change to wireframe 1.25 and color them blue.

(Type: select sulfur → Press enter→ Type: wireframe 1.25→Press enter→ Type: color blue).

8. Show for each disulphide bridge the position of each Cys and the chain involved.

9. Move the structure 360°. (Type: move $0 \ 360 \ 0 \ 0 \ 0 \ 0 \ 0 \ 10 \rightarrow$ Press enter)

10. Save the protein structure.

File Edit Display Yiew Iools Plugins Macros	Help	*	Sau
	Save [n:	🗂 hsperfdata_emtenanalkhuda 8	ir Image Type JPEG v JPEG v JPEG v JPEG v JPEG v 100 PNG Compression (2) 0 2 4 6 8
	File <u>N</u> ame Files of <u>T</u>	e: <u>ltrz.jpg</u> Type: All Files	
[CYS]6:C.SG #449 -11.1 500 x 500	38.2/125.		Save Cancel