

BCH 447 Practical Metabolism D-Xylose Absorption Test

Objectives

- 1. To learn the technique of D-xylose absorption test and its relation to the function of the upper small intestine.
- 2. To find out whether the malabsorption state of some patients is due to intestinal or pancreatic diseases.

Introduction

The small intestine can be studied in **two parts**, the upper small intestine (**jejunum**) and the lower small intestine (ileum).

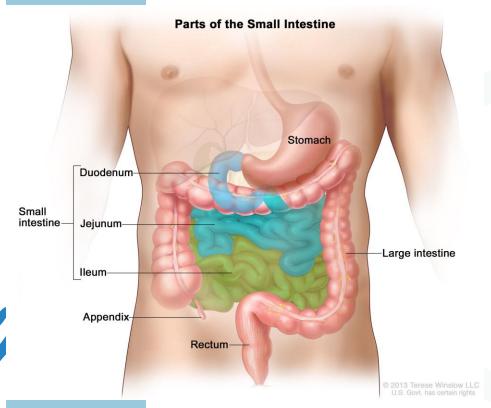


Figure 1. Small intestine anatomy. Source: cancer.gov

• The best to test the function of the **upper small intestine** is \rightarrow

(D-xylose absorption test)

• The best to test the function of the **lower small intestine** is \rightarrow

(Vitamin B12 absorption test)

Impaired absorption of D- xylose occurs in conditions where there is *flattening of the* intestinal villi such as celiac disease and tropical sprue.

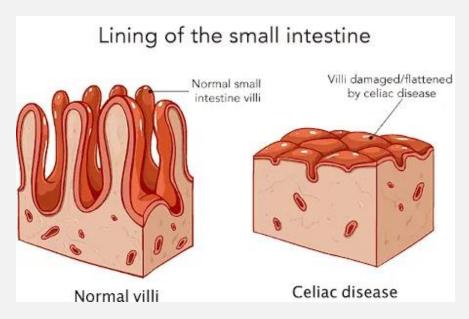


Figure 2. Flattening of intestinal villi in celiac disease. Source: beyondceliac.org

This results in \rightarrow The test does of D-xylose level in blood and urine will be low.

- *Celiac disease* is a serious autoimmune disorder that can occur in genetically predisposed people where the ingestion of **gluten** leads to damage in the small intestine.
- *Tropical sprue* is a disorder of unknown cause (infection) affecting people living in <u>tropical areas</u> who develop abnormalities of the small intestine structure destruction of the villi.

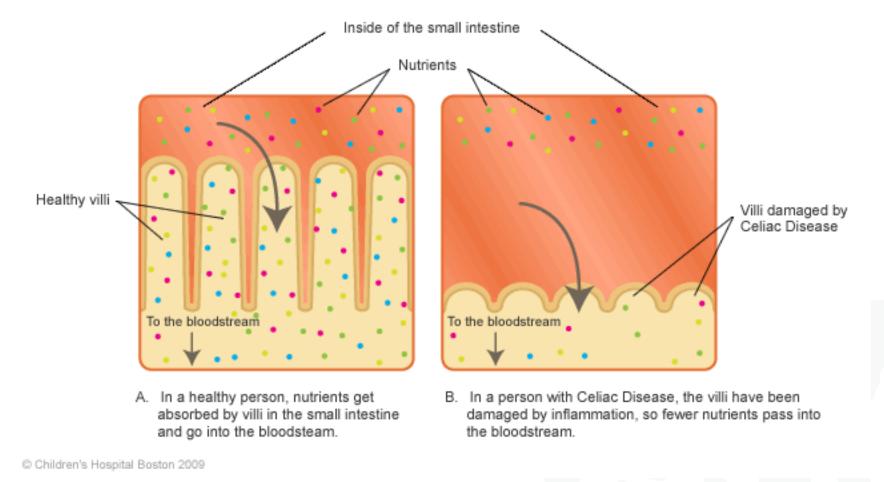


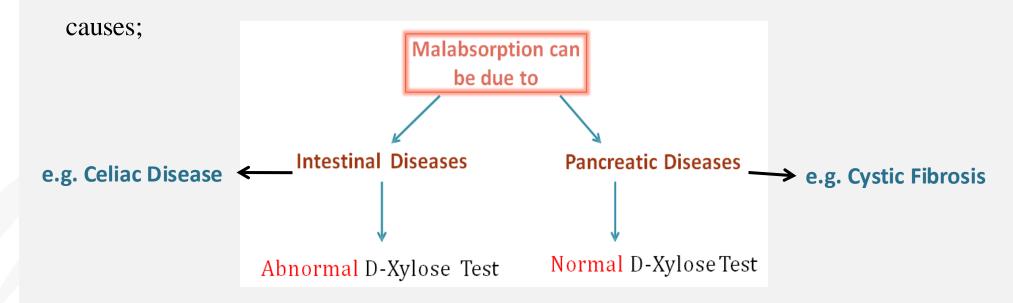
Figure 4. celiac disease affect on nutrient absorption. Source: youngmenshealthsite.org

D- Xylose Absorption Test

D-Xylose is a type of **aldopentose sugar** found in plants:

- 1. It is **not** metabolized in the body.
- 2. It is **not** normally present in significant amounts in blood.
- 3. It is normally easily absorbed by the intestine.

Note: Pancreatic digestive enzymes are not needed for D-Xylose absorption.


(this is noted to distinguish between celiac disease and cystic fibrosis)

How is the test preformed?

- ➤ To do the test, D-xylose is administrated orally, **60**% is absorbed in the upper small intestine, about **25**% of the dose is subsequently excreted by the kidneys.
- ➤ In adults, the standard oral dose is 25 g after which the urinary output during the next five hours is 5.8 g in normal subjects
- > Patient may have a blood sample collected after 2 hours of drinking the liquid.

• The amount of D-xylose detected in **urine** or **blood** in a specified time interval after administration of a measured dose of D-xylose, is used to evaluate *malabsorption*.

• Also, it can be used to differentiate between malabsorption's two main different

The accuracy of the D-Xylose absorption test is affected by two factors:

1. Rate of Absorption by Intestine

2. Rate of Excretion by Kidneys

→ Thus, In case of impaired **renal function** the D-xylose level in a 5 hrs urine sample **is low**, which can lead to *false diagnosis of coeliac disease*.

In order to eliminate misinterpretations as a result of renal disease

A blood determination of D- xylose after 2 hours of the oral dose is carried out along with the determination of D-xylose in urine

A normal high blood D-xylose level in the presence of decreased urine D-xylose excretion suggest:

Normal Absorption due to normal intestine

Renal dysfunction

How to prepare the patient for the test?

- The patient/volunteer should keep **an over night fast**, in the morning empties the bladder and discards the urine.
- > Before breaking the fast, 25g of D-xylose in 250ml water is taken by mouth.
- The patient /volunteer should then drink water at one and two hours after drinking the D-xylose solution.
- All urine passed during the next five hours is collected.

Principle

1. **D-xylose** is a **pentose** which produces a **brown complex** with maximum absorption at 475 nm when reacted with **O-toluidine** in the presence of acetic acid and heat.

2. Hexoses also reacts with O-toluidine *but produce a different complex* with an absorption peak at 622 nm, this ensures that interference with glucose is minimum.

Estimation of D-xylose in urine

Label 7 test tubes:

	T1	T2	T3	T4	S1	S2	Blank
Urine 'A'	0.1 ml	0.1 ml					
Urine 'B'			0.1 ml	0.1 ml			
Standard					0.1 ml	0.1 ml	
dH2O							0.1 ml
O-toluidine reagent	7 ml						

Cover tubes by aluminum foil & mix the contents of each tube

Boiling water bath for 5 minutes

Cool the tubes for 1-3 min

Read absorbance at 475 nm against blank

Results and Calculations

Tubes	Absorbance at 475nm	Mean of abs
T1		
T2		
T3		
T4		
S1		
S2		

$$Concentration of \ D_xylose \ in \ urine = \frac{Mean \ abs \ of \ test}{Mean \ abs \ of \ std} \ x \ Conc. of \ std. x \ D. f$$

- \triangleright Normal value: > 2.5 g / total volume collected
- ➤ **Abnormal value:** less than 2.5 g / total volume collected

Example

Dilution factor= 10

Total volume = 150 ml

Mean Abs. sample = 0.0843 **Mean Abs. std.**= 0.558

- Conc. Of urine D-xylose= 0.0843 x 0.01 x 10 = 0.0151 g/0.1 ml 0.558

$$= 0.0151 \text{ g} \rightarrow 0.1 \text{ ml}$$

 \rightarrow 150 ml

- Conc. Of urine D-xylose = 22.6 g/ total volume

Normal

Homework:

- Mention **3 diseases** that can cause malabsorption (other than celiac disease and tropical sprue).
- Mention 3 lab tests used for malabsorption assessment.