Lab sheet #4 # -Preparation of Different Buffer Solutions- | A | Nature | of l | huffers | |----------|---------------|------|-----------| | | , maiurc | UI | Dullel 5. | | Method and calculations:
You are provided with: 0.2M solution of CH ₃ COOH and 0.2M solution of CH ₃ COONa. | |--| | 1. Determine which the weak acid is and which is the conjugated base [its salt]. | | 2. Calculate the volume that you must take from CH ₃ COOH and CH ₃ COONa to prepare the following mixtures with final volume of the solution =20 ml: | | 1. 100% [HA] 2. 75% [HA], 25% [A-] 3. 50% [HA], 50% [A-] 4. 25% [HA], 75% [A-] | | | | | | 3. Mix the solutions properly and measure the pH of final solution. | | 4. Calculate the pH for each solution mixture and record results in the table below. [pKa= 4.76]. | | | | | | | ### **Record your results in the following table:** | Solution | HA
(ml) | A-
(ml) | Final volume | Calculated pH | Measured
pH | 2M HCl
(ml) | Measured
pH | The difference | |-----------------|------------|------------|--------------|---------------|----------------|----------------|----------------|----------------| | 100%[HA] | | | 20 ml | | | 0.1 | | | | 75%[HA],25%[A-] | | | 20 ml | | | 0.1 | | | | 50%[HA],50%[A-] | | | 20 ml | | | 0.1 | | | | 25%[HA],75%[A-] | | | 20 ml | | | 0.1 | | | #### B) Preparation of buffer: | You are provided with 0.2M acetic acid and solid sodium acetate. -Prepare 50ml of a 0.19M acetate buffer pH =4.86 if you know that (pKa=4.7). | | | | | |---|--|--|--|--| → Now, take ml from 0.2M acetic acid and add g from solid sodium acetate and then | | | | | ## C) Testing for buffering behaviour: - 1. In one beaker add 10ml of 0.19M acetate buffer that you have prepared, and in another beaker add 10ml of 0.2M KCl. - 2. Follow the table. | Solution | Measured pH | 2M HCl | Measured pH | |--|-------------|--------|-------------| | 0.19 M acetate buffer (prepared in step B) | | 0.1 ml | | | 0.2M KCl. | | 0.1 ml | | In the discussion after introducing your discussion complete the volume up to 50 ml by addition of water. **(A)** - Discuss the calculated pH and the measured pH - Discuss the resistance, and explain the reason behind the resistance (is it the same as you expected or not and why). each solution must be discussed **(C)** - Is the measured pH of your prepared buffer the same as calculated? - Discuss the resistance between your buffer and the KCl -explain the reason behind the resistance- Formulas needed for this lab: $$pH = pK_a + \log \frac{\left[A^{-}\right]}{\left[HA\right]}$$ $$pH = \frac{pK_a + p[HA]}{2}$$ $$pOH = \frac{pk_b + p[OH]}{2}$$ $$Molarity = \frac{moles\ of\ solute\ (mole)}{volume\ of\ solution\ in\ (L)}$$ $$Moles = \frac{weight(g)}{Molecular\ weight(\frac{g}{mole})}$$