

Protein quantification

- The quantitation of protein content is important and has many applications in clinical laboratory practices and in research especially in the field of biochemistry.
- The accurate quantitation of protein content is a <u>critical step</u> in protein analysis.
- Protein quantitation is often necessary before processing protein samples for *isolation*, *separation* and *analysis* by different techniques.
- Depending on the <u>accuracy</u> required and the <u>amount</u> and <u>purity</u> of the protein available,
 different methods are appropriate for determining protein concentration.

Different methods of protein quantification

Methods:

1. Direct assay: measure the absorbance at 280 nm (The simplest and most direct assay method), *Why?*

2. Colorimetric/fluorescent and reagent-based protein assay: Protein is added to the reagent, producing a <u>color</u> change or increased <u>fluorescence</u> in proportion to the amount added.

The most commonly used reagent-based techniques involve:

- Biuret test.
- Bradford test.
- Bicinchoninic acid assay (BCA assay).
- Lowry test.

Choosing the compatible method

- No one reagent can be considered to be the ideal or best protein assay method.
- Each method has its advantages and disadvantages. *(Table 1)*

How to choose the appropriate method:

- Compatibility of the protein assay method with the sample \rightarrow *Interfering substances*
- Availability
- Accuracy
- Sensitivity
- Incubation time desired

 \rightarrow The objective is to select a method that requires the <u>least manipulation</u> or <u>pre-treatment</u> of the samples to accommodate substances that <u>interfere with the assay.</u>

Choosing the compatible method

Method	Sensitivity	Time	Reagent	Interferences	Disadvantages and comments
Biuret	Low 1-20 mg	Moderate 20-30min	Alkaline copper sulphate	Zwitterionic buffers, Some amino acids	Similar color with all proteins. Destructive to protein samples.
Lowry	High ~ 5 μg	Slow 40-60min	Cu ⁺² Folin– Ciocalteau	Ammonium sulphate, glycine, Zwitterionic, buffers, Mercaptans	Time-consuming. Color varies with proteins. Destructive to protein samples.
Bradford	High ~1μg	Rapid 15 min	Coomassie Brilliant Blue G-250	Strongly basic Buffers, detergents TritonX-100, SDS	Stable color, which varies with proteins. Reagent commercially available. Destruction to protein samples. Discoloration of glassware.
BCA	High ~ 1 μg	Slow 60 min	Cu ²⁺ , bicinchoninic acid	EDTA, DTT, Ammonium sulphate	Compatible with detergents. Reagents commercially available. Destructive to Protein samples.
Spectroph -otometric (A280)	Moderate 50-100 µg	Rapid	-	Purines, pyrimidines, Nucleic acids	Useful for monitoring column eluents. Nucleic acid absorption can be corrected. None-destructive to protein samples. Varies with proteins.

Determination of protein concentration

- Protein concentration is determined by reference to a standard curve consisting of known concentrations of a purified reference protein.
- Because proteins <u>differ in their amino acid compositions</u>, each one responds somewhat <u>differently</u> in each type of protein assay.

How to choose a reference standard? \rightarrow purified, known concentration of the most abundant protein in the samples

- → This is usually <u>not possible</u> to achieve, and it is seldom <u>convenient or necessary</u>.
- → In many cases, the goal is merely to estimate the <u>total protein concentration</u>, and slight protein-toprotein variability is <u>acceptable</u>.
- → Bovine serum albumin (BSA) works well for a protein standard → 1- widely available in high purity
- **2-** relatively inexpensive.

Determination of unknown concentration by standard curve

BSA standard curve

• Typically, standard curves are constructed using at <u>least two</u> <u>replicates</u> for each point on the curve.

Experiment 1. Qualitative detection of proteins by biuret test

Objective:

• To detect the presence of a protein or peptides using **biuret test**.

Principle:

- In this reaction, peptide bonds in the proteins and peptides treated with an alkaline solution of dilute copper sulphate CuSO4 (biuret reagent) forming a purple coloured complex.
- The colour density is <u>proportional</u> to the amount of proteins present.
- Two or more peptide bonds.
- Despite its name, the reagent <u>does not</u> in fact contain biuret ((H₂N-CO-)₂NH) → The test is named so because it also gives a positive reaction to the peptide-like bonds in the biuret molecule.

Experiment 1. Qualitative detection of proteins by Biuret test

Method:

- 1 Label three test tubes as **A** and **B**.
- 2. In tube A: add 1 ml of animal crude extract.
- 3. In tube **B**: add 1 ml of water.
- 4. Add 1 ml of biuret reagent to all tubes and mix well.

Results:

Tube	Observation
Animal crude extract	
Water	

Blue color is the Biuret reagent color

Experiment 2. Quantitative estimation of proteins by Lowry assay

Objective:

• To determine the concentration of extracted protein by **Lowry assay.**

Principle:

- Replaced by the more sensitive methods.
- The sensitivity is moderately constant from one protein to another.
- The method is based on <u>two chemical reactions</u>: 1st reaction is based on Biuret reaction. 2nd reaction is the reduction of Folin-Ciocalteu reagent (sodium tungstate, molybdate and phosphate) by the copper-peptide bond complex, → a color change of the solution into blue (650 to 750nm).
- The resultant strong blue colour is partly dependent on the tyrosine and tryptophan content of the protein sample.

Experiment 3. Quantitative estimation of proteins by Biuret assay

Objective:

• To determine the concentration of extracted protein by **biuret assay.**

Principle:

- Biuret method is based on copper ions Cu2+ binding to peptide bonds of protein under alkaline condition to give a violet colour that have a maximum absorbance at 540 nm.
- The intensity of the color, and hence the absorption at 540 nm, <u>is directly proportional to the protein</u> <u>concentration, according to the Beer–Lambert law.</u>

Figure 3. The formation of biuret complex in biuret reaction

From lower to higher concentration

There is a linear relationship between purple color developed and concentration.

Experiment 3. Quantitative estimation of proteins by Biuret assay

Results:

Test tube	Protein concentration (g/L)	Absorbance at 540 nm
	[X- axis]	[Y- axis]
Blank		
Α		
В		
С		
D		
Е		
F		
G		
Animal crude extract (D1)		
Animal crude extract (D2)		
Plant crude extract (D1)		
Plant crude extract (D2)		

Table 1. Concentration of standard BSA solution and theirabsorbance at 540 nm.

Figure 4. Standard curve of BSA using biuret method.

Homework

• A crucial step of many biomedical laboratory experiments is the quantitation of a specific

protein. Several techniques have been employed to accomplish that. *Name 3 techniques*.