

Objectives

- To determine the level of lactate dehydrogenase (LDH) in serum.
- To evaluate the presence of tissue damage.

Blood Enzymes

- Plasma, serum or blood proteins, are proteins present in blood plasma which have several functions.
- Some blood proteins also act as enzymes.
- **Enzymes** are biocatalysts that increase the rate of the chemical reaction.
- Clinical enzymology refers to measurement of enzyme activity in body fluids for the diagnosis and treatment of diseases.
- Most clinical enzyme measurements using serum or plasma, occasionally other fluids, such as urine and gut secretions are also investigated.
- The most commonly used body fluid for this purpose is **SERUM**. (Why?)

Differences Between Plasma Enzymes

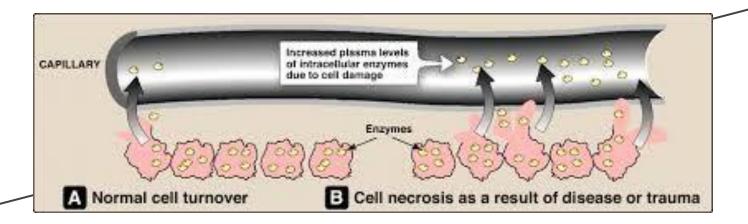
Plasma Enzymes

1. Plasma-specific Enzymes (Functional)

Enzymes that are <u>normally present</u> in the plasma and <u>perform their primary function in the blood</u>.

2. Non-plasma specific Enzymes (Non functional)

<u>Intracellular</u> enzymes that are normally <u>present in very small amount</u> in blood and <u>perform no known</u> function in blood.


	Functional plasma enzymes	Non functional plasma enzymes
Their substrate	Always present in the blood	Absent from the blood
Site of synthesis	Liver	Different organs
Effect of diseases in its plasma levels	Decrease in liver diseases	Different enzymes increase in different organ diseases
Examples	Thrombin Plasmin	ALT LDH

Pause and Think Which of these enzymes is a better diagnostic indicator? Why?

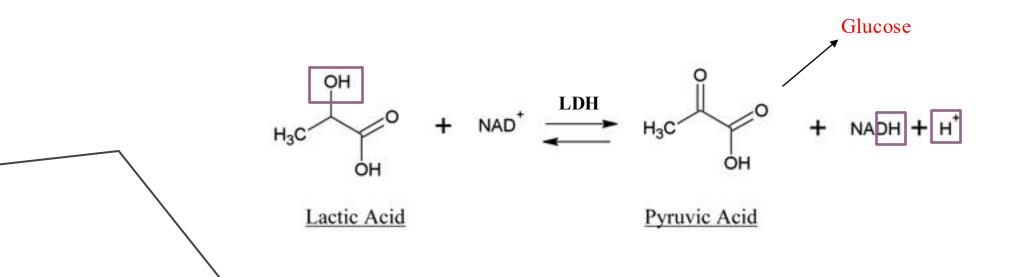
Sources of Non functional Plasma Enzyme

- 1. Cell damage with the release of its content of enzymes into blood
- 2. Block in the secretory pathway
- 3. Increase enzyme synthesis

So estimation of the plasma concentration of these enzymes in blood <u>is useful for the diagnosis of disease</u> depending on their tissue origin.

Clinical Significance of Non-Functional Plasma Enzymes

Measurement of non-functional enzymes is important for:


- 1. Diagnosis of diseases.
- 2. **Prognosis of the disease:** following up of the treatment by measuring plasma enzymes before and after treatment.

Lactate Dehydrogenase (LDH)

- Lactic acid dehydrogenase (LDH) is an enzyme that helps produce energy.
- It is present in almost all of the tissues in the body and becomes elevated <u>in response to cell damage</u>
- LDH is most often measured to evaluate the presence of tissue damage (diagnostic).
- The enzyme LDH is in many body tissues, especially the heart, liver, kidney, skeletal muscle, brain,
 blood cells and lungs.

LDH Reaction

- LDH is a hydrogen transfer enzyme which catalyzes the **interconversion of pyruvate and lactate** with the mediation of **NAD**⁺ as hydrogen acceptor, eventually converting pyruvate to glucose.
- The optimum pH for lactate pyruvate (L \rightarrow P) reaction is **8.8 9.8**, While for pyruvate to lactate (P \rightarrow L) is **7.7 7.8**.
- The enzyme is inhibited by sulfhydryl reagents and mercuric ions.

Practical Part

Lactate Dehydrogenase Assay

Principle

LDH catalysis the following reaction:

Pyruvate + NADH + H⁺
$$\rightarrow$$
 L-Lactate + NAD⁺

■ The rate of NAD⁺ formation is indicated by **decrease in the absorbance at 340 nm** and it is <u>directly</u> <u>proportional to serum LDH activity.</u>

If:

- NADH is **reactant** → **decrease** the absorbance/min
- NADH is **product** → **increase** the absorbance/min

Method

	Tube			
Sample (serum)	10 μl			
BUF (buffer/substrate)	1000 μ1			
Mix and incubate at 37°C for 1-5 minutes				
SUB (substrate)	250 μ1			
Mix, read the absorbance after 1 minute and at the same time start the stop				

Measure enzyme kinetics using UV-visible spectroscopy:

2) Applications \Rightarrow 2) Simple Kinetics \Rightarrow wave length (340 nm) \Rightarrow 1) Seconds \Rightarrow Duration (240 sec = 4 min) \Rightarrow

Intervals (60 sec= 1 min) → Print Data Table (off) → Press start (2 times) (note: neglect the first reading)

watch. Read the absorbance again exactly after 1, 2 and 3 minutes

Results and Calculations

		Time (min)	Absorbance at 340 nm
•	A_1	1	
	A_2	2	
	A_3	3	
	A_4	4	

Calculations

•
$$\Delta A_1$$
, = $A_1 - A_2$ $\Delta A_2 = A_2 - A_3$ $\Delta A_3 = A_3 - A_4$

$$\Delta \mathbf{A}_2 = \mathbf{A}_2 - \mathbf{A}_3$$

$$\Delta A_3 = A_3 - A_4$$

$$\Delta A/min = (\Delta A_1 + \Delta A_2 + \Delta A_3) / 3$$

• LDH(U/L) =
$$\Delta A \times 20000$$

Normal Values 225 to 450 U/L Adults