

ę	Schedule of Assessment Tasks for Stude	nts Durinç	y the Semester
	Assessment task (i.e., essay, test, quizzes, group project, examination, speech, oral presentation, etc.)	Week Due	Proportion of Total Assessment
1	Major exam I	Week 6	20%
2	Major exam II	Week 12	20%
3	Quiz and activities	Week 1-15	20%
Λ	Final Exam	Week 16	40%

 Extract the dried and ground plant material with a suitable solvent.
Concentrate the extract.
 Separate and purify each component.
• Since the concentrate contains an enormous variety of compounds, early isolations involved <i>selective crystallization</i> of the most dominant component in the mixture.
 Liquid natural products were <i>distilled</i>.
 Natural organic acids were isolated by aqueous basic extraction and natural organic bases (alkaloids) were isolated by aqueous acidic extraction.
Dr. Assem Barakat CHEM 455 🐉 ambarakat@ksu.edu.sa

The Isoprene Rule				
n		Class	No. of Carbons	Limonene Bisabolane C10 C15
	2	Monoterpene	C10	
	3	Sesquiterpene	C15	
	4	Diterpene	C20	Lanosterol C30
	5	Sesterpene	C25	
	6	Triterpene	C30	(Jassasadadax)
	8	tetraterpene	C40	tetraterpenes (carotenoids) C40
Dr.	Asse	em Baraƙat	СНЕМ 455	فت ambarakat@ksu.edu.sa متعدد علي الملك المعلى المنكوب الملك الملك المعلى المنكوب المعلى المعلى المنكوب المعلى المنكوب المعلى المعلى المعلى المعلى المعلى المعلى المعلى المعلى المنكوب المعلى المعلى المعلى المنكوب المعلى

Class	sific	cation	of Te	rpenoids	5
 Most natural terpenois basis of value of n or r 	d hyd numb	rocarbon have the rocarbon atom	he general ms present	formula (GH ₈) _n . They in the structure.	y can be classified on the
	S.No.	Number of carbon	Value of n	Class	
	1.	10	2	Monoterpenoids(C10H16)	
	2.	15	3	Sesquiterpenoinds(C15H24)	
	3.	20	4	Diterpenoids(C20H32)	
	4.	25	5	Sesterpenoids(C25H40)	
	5.	30	6	Triterpenoids(C30H48)	
	6.	40	8	Tetraterpenoids(C40H64)	
	7.	>40	>8	Polyterpenoids(C ₅ H ₈)n	
 Each class can be fur structure: 	ther s	ubdivided into su	bclasses ad	ccording to the num	ber of rings present in the
i) Acyclic Terpenoids: Th	ney co	ontain open struc	cture.		
ii) Monocyclic Terpenoi	ds: Th	ey contain one ri	ing in the st	ructure.	
iii) Bicyclic Terpenoids: 1	hey c	contain two rings	in the struc	ture.	
iv) Tricyclic Terpenoids:	They	contain three ring	gs in the stru	ucture.	
v) Tetracyclic Terpenoid	ds: The	ey contain four rir	ngs in the st	ructure.	11
· · · · · · · · · · · · · · · · · · ·		-			16

General Methods of structure elucidation

iv) Dehydrogenation:

On dehydrogenation with Sulphur or selenium, terpenoids converted to aromatic compounds.
 Examination of these products the skelton structure and position of side chain in the original terpenoids can be determined. For example α-terpineol on Se-dehydrogenation yields para-cymene.

v) Oxidative degradation:

Oxidative degradation has been the parallel tool for elucidating the structure of terpenoids. Reagents for degradative oxidation are ozone, acid, neutral or alkaline potassium permanganate, chromic acid, sodium hypobromide, osmium tetroxide, nitric acid, lead tetra acetate and peroxy acids. Since oxidizing agents are selective, depending on a particular group to be oxidized, the oxidizing agent is chosen with the help of structure of degradation products.

General Methods of structure elucidation

vi) Relation between general formula of compound and type of compounds:

For example limonene (mol. formula. $C_{10}H_{16}$) absorbs 2 moles of hydrogen to give tetrahydro limonene (mol. Formula $C_{10}H_{20}$) corresponding to the general formula. C_nH_{2n} . It means limonoene has monocyclic structure.

General formula of parent saturated Hydrocarbon	Type of structure	
C _n H _{2n+2}	Acyclic	
C _n H _{2n}	Monocyclic	
C_nH_{2n-2}	Bicyclic	
C _n H _{2n-4}	Tricyclic	
C _n H _{2n-6}	Tetrayclic	

vii) Spectroscopic studies:

UV Spectroscopy: In terpenes containing conjugated dienes or a,β-unsaturated ketones, UV spectroscopy is very useful tool, **IR Spectroscopy:** IR spectroscopy is useful in detecting group such as hydroxyl group (~3400cm⁻¹) or an oxo group (saturated 1750-1700cm⁻¹), **NMR Spectroscopy, Mass Spectroscopy, and X-ray analysis**

24

hysical properties of all	pha Terpineol		
Properties of alph	a Terpineol		
Chemical formula	C10H18O	1003	
<u>Molar mass</u> (g·mol ^{−1})	154.253	Service Servic	1
Appearance	Colorless liquid	Alpha Terpineol	
Density(g/cm ³)	0.93		Ada. Terpent 12 G ada A
Melting point(°C)	-35.9 to -28.2	Y	
Boiling point(°C)	214-217	H,C OH	
Solubility in water(g/L)	2.42	1	

DITERPENOIDS Definition:-

- Diterpenes are a class of chemical compounds composed of two terpene units, often with the molecular formula C₂₀H₃₂.
- Diterpenes consist of four isoprene subunits.
- They are biosynthesized by plants, animals and fungi via the HMG-CoA reductase pathway, with geranylgeranyl pyrophosphate being a primary intermediate.
- Diterpenes form the basis for biologically important compounds such as retinol, retinal, phytol and taxanes.
- Diterpenes can be classified as linear, bicyclic, tricyclic or tetracyclic, pentacyclic, and macrocyclic diterpenes depending on their skeletal core.
- In nature, they are commonly found in a polyoxygenated form with keto and hydroxyl groups, these
 last often esterified by small-sized aliphatic or aromatic acids.

Acyclic: Phytol Monocyclic: Vitamin A(retinol) Bicyclic: Manool Tricyclic: Abietic acid, Podocarpic acid Tetracyclic: Gibberellic acid

PHYTOL

- Introduction:-
- It is a kind of diterpene which comes under the "acyclic diterpene" category.
- Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll.
- It is obtained from alkaline hydrolysis of chlorophyll, which is then converted to phytanic acid and stored in fats.
- It is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1.
- It is an optically active compound which boils at 145°C at 0.03mm pressure.
- Molecular Formula: C₂₀H₄₀O
- Melting Point: < 25 °C

TRITERPENOIDCompounds with carbon skeleton based on 6 isoprene units Derived biosynthetically from the acyclic C₃₀ hydrocarbon Relatively complex cyclic structure Most either alcohols, aldehydes or carboxylic acids. Colourless, crystalline, often melting, optically active substance which generally difficult to characterize because lack of chemical reactivity Widely used test – Liebermann-Burchard reaction (acetic anhydride-conc H₂SO₄) – produces a blue-green colour with most triterpenes and sterols

CAROTENOIDS

- Carotenoids are the group of non-nitrogenous, yellow, red or orange pigments that are universally distributed in living things.
- These are also called tetraterpenoids, that are produced by plants and algae as well as several bacteria and fungi.
- There are over 600 known carotenoids
- They split into 2 classes xanthophyll and carotenes
- Tetraterpenoids contain 40 C atoms
- General structure of carotenoid is a polyene chain consisting of 9-11 double bonds and possibly terminating in rings

general structure of carotenoids

The five-carbon building blocks of all terpenoids, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), are derived from two independent pathways localized in different cellular compartments.

- The cytosol localized Mevalonate pathway provides C5 units for sesquiterpene and triterpene biosynthesis.
- The **methylerythritol phosphate (MEP or nonmevalonate) pathway**, localized in the plastids, is thought to provide IPP and dimethylallyl diphosphate for hemiterpene, monoterpene, and diterpene and tetraterpene biosynthesis.

The Mevalonic Acid Pathway

The six-carbon compound MVA is transformed into the five-carbon phosphorylated isoprene units in a series of reactions:

- phosphorylation of the primary alcohol group.
- Decarboxylation / dehydration
- then give IPP.
- IPP is isomerized to the other isoprene unit. DMAPP. bv an enzyme isomerase which stereospecifically removes the pro-R (HR) proton from C-2, and incorporates a protonfrom water on to C-4.

Whilst the isomerization is reversible, the equilibrium lies heavily on the side of DMAPP.

Cholesterol & atherosclerosis

Sterols are present in tissues both in the nonesterified (free) form and as esters of aliphatic fatty acids.

In the disease atherosclerosis, fatty materials containing cholesterol form deposits (plaques), especially in the walls of the major blood vessels, and vascular function may be fatally impaired.

The disease has many contributory factors but typically is associated with elevated concentrations of cholesterol in the blood plasma. One aim of medical treatment is to lower the plasma cholesterol level.