Final Examination

Math 204

Semester I - 1446

Time: 3H

Question 1: [4,4,5]

- a) Solve the initial value problem $\begin{cases} xdy = \left(y + \frac{4x^5}{1+x^4}\right)dx \\ y(2) = 3. \end{cases}$
- b) Solve the differential equation $\frac{dy}{dx} = \frac{ye^x + 3e^x y 3}{ye^x 2e^x + 4y 8}.$
- c) Find the orthogonal trajectories for the family of curves represented by $y=e^{Cx}$

Question 2: [4,4]

a) Obtain the general solution of the differential equation

$$(9 - 6y + e^{-3x})dx = 2dy.$$

b) Find the general solution of the differential equation

$$y'' - 4y = xe^x + \cos 2x.$$

Question 3:[4,5]

- a) Solve the system of differential equations $\begin{cases} x'' y = t^3 \\ y'' x = 0. \end{cases}$
- b) Find the general series solution of the differential equation about the ordinary point $x_0 = 0$, such that y(0) = 0 and y'(0) = 0

$$(x^2 - 1)y'' + 6xy' + 4y = -4.$$

Question 4: [5,5]

a) Find the Fourier series for the 2π -periodic function

$$f(x) = \begin{cases} -(\pi + x) & \text{if } -\pi < x < 0 \\ \pi - x & \text{if } 0 \le x < \pi \end{cases}.$$

Then deduce the value of the numerical series $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$.

b) Find the Fourier integral representation for the function

$$f(x) = \begin{cases} \pi - |x| &, & |x| < \pi \\ 0, & |x| > \pi \end{cases}$$

and deduce the value of the integral $\int_{0}^{\infty} \left(\frac{\sin \pi x}{x}\right)^{2} dx$.

Scanned with

Question 1 : [4,4,5]

a) We take
$$x > 0$$
. $y' - \frac{1}{x}y = \frac{4x^4}{1+x^4}$, $P(x) = -\frac{1}{x}$, $Q(x) = \frac{4x^4}{1+x^4}$.
$$\int P(x)dx = \ln(\frac{1}{x}), \text{ then } \qquad \bigvee(X) = \bigvee_{x \in X} (x) =$$

$$y(2) = 3$$
, then $c = \frac{1}{2}(3 - 2\ln(17))$.

b) We have
$$y' = \frac{(y+3)(e^x-1)}{(y-2)(e^x+4)}$$
, then $\frac{y-2}{y+3}y' = \frac{e^x-1}{e^x+4}$ and
$$\int \frac{4-2}{y+3} dy = \int \frac{e^x-1}{5-4} dx = \int [1-\frac{5}{e^x+4}] dx = x-5 \int \frac{e^{-x}}{4+4e^x} dx$$

$$y-5 \ln|y+3| - \frac{1}{4} \ln(4e^{-x}+1) - x = c.$$

c) $y=e^{Cx}$, then $y'=Cy=\frac{y\ln y}{x}$. The equation of the orthogonal trajectories is $y'y\ln y=-x$. Hence the solution of the equation is $y'=\frac{y\ln y}{x}$ So DE 4 which is $y=\frac{-x}{y\ln y}$ $2y^2\ln y-y^2=-2x^2+c$.

$$y'' = \frac{y \ln y}{x}$$

$$\int y \ln y \, dy = \int -x \, dx$$

$$\int y \ln y \, dy = \int -x \, dx$$

$$2y^2 \ln y - y^2 = -2x^2 + c.$$

Question 2:[4,4]

a)
$$y' + 3y = \frac{1}{2}(9 + e^{-3x})$$
. The general solution is $y = (a + bx)e^{-3x} + c$.

$$y = (a + \frac{x}{2})e^{-3x} + \frac{3}{2}$$
.

b) The characteristic equation of the differential equation is $r^2 - 4$. The general solution of the differential equation is

$$y = ae^{2x} + be^{-2x} + (cx+d)e^x + A\cos(2x) + B\sin(2x).$$
 Hence,
$$y = ae^{2x} + be^{-2x} - (\frac{1}{3}x + \frac{2}{9})e^x - \frac{1}{8}\cos(2x).$$

Question 3:[4,5]

a) The operator form of the system $\begin{cases} D^2x - y = t^3 \\ -x + D^2y = 0 \end{cases}$ We apply D^2 , we get $x^{(4)} - x = t$, then $x = ae^t + be^{-t} + c\cos t + d\sin t + At + B$.

$$x(t) = ae^{t} + be^{-t} + c\cos t + d\sin t - 6t$$

and

$$y(t) = ae^{t} + be^{-t} - c\cos t - d\sin t - t^{3}.$$

b) Let
$$y(x) = \sum_{n=0}^{+\infty} a_n x^n$$
, $xy'(x) = \sum_{n=0}^{+\infty} n a_n x^n$, $x^2 y'' = \sum_{n=0}^{+\infty} n(n-1) a_n x^n$, $y'' = \sum_{n=0}^{+\infty} (n+1)(n+2) a_{n+2} x^n$.

Hence

$$\sum_{n=0}^{+\infty} \left(n(n-1)a_n - (n+1)(n+2)a_{n+2} + 6na_n + 4a_n \right) x^n = -4.$$

For n = 0, we get $a_2 = 2(a_0 + 1)$, and for $n \ge 1$,

$$a_{n+2} = \frac{n+4}{n+2}a_n.$$

If $U_n = a_{2n}$ and $V_n = a_{2n-1}$, for $n \ge 1$, we have

$$U_n = a_{2n} = \frac{n+1}{n}U_{n-1}, \Rightarrow U_n = a_{2n} = (n+1)(a_0+1)$$

and

$$V_n = a_{2n-1} = \frac{2n+3}{2n+1}V_{n-1}, \Rightarrow V_n = a_{2n-1} = \frac{1}{3}(2n+3)a_1.$$

As $a_0 = 0$ and $a_1 = 0$,

$$y = \sum_{n=1}^{+\infty} (n+1)x^{2n} = \frac{x^2(2-x^2)}{(1-x^2)^2}.$$

Question 4:[5,5]

a) The function f is odd, the $a_n = 0$ and $b_n = \frac{2}{\pi} \int_0^{\pi} (\pi - x) \sin(nx) dx = \frac{2}{n}$. Hence the Fourier series of f is

$$\sum_{n=1}^{+\infty} \frac{2}{n} \sin(nx).$$

As f is differentiable on $(0,\pi)$, we get for $x=\frac{\pi}{2}$,

$$\frac{\pi}{2} = \sum_{n=0}^{+\infty} \frac{2}{n} \sin(n\frac{\pi}{2}) = \sum_{n=0}^{+\infty} \frac{2(-1)^n}{2n+1}$$

b) The function f is even, then the Fourier integral of f is

$$\int_0^{+\infty} A(t) \cos(xt) dt$$

where $A(t) = \frac{2}{\pi} \int_0^{+\infty} (\pi - x) \cos(xt) dx = \frac{2}{\pi} \frac{1 - \cos(\pi t)}{t^2}$.

Taking x + 0, we get

$$\frac{\pi^2}{4} = \int_0^{+\infty} \frac{1}{t^2} \sin^2(\frac{\pi t}{2}) dt. \qquad 2 \qquad = \int_0^{+\infty} \frac{\text{Ain}^2(\sqrt{t})}{(2\pi)^2} dx$$

On substituting $x = \frac{t}{2}$, we get the desired result.

we get the desired result.

So
$$\int_0^{\pi} \frac{d^2 n}{n^2} dn = \frac{\pi^2}{2}$$

a substituting
$$x = \frac{t}{2}$$
, we get the desired result.

So $\int_{0}^{t} \frac{(2\pi)^{2}}{n} dn = \frac{1}{2} \int_{0}^{t} \frac{(2\pi)^{2}}{n} dn$

$$\int_{0}^{t} \frac{(2\pi)^{2}}{n} dn = \frac{1}{2} \int_{0}^{t} \frac{(2\pi)^{2}}{n} dn$$

$$\int_{0}^{t} \frac{(2\pi)^{2}}{n} dn = \frac{1}{2} \int_{0}^{t} \frac{(2\pi)^{2}}{n} dn$$

$$\int_{0}^{t} \frac{(2\pi)^{2}}{n} dn = \frac{1}{2} \int_{0}^{t} \frac{(2\pi)^{2}}{n} dn$$

$$A(\lambda) = 2 \int_{0}^{\pi} (\pi - x) \log(\lambda x) dx$$

$$U(n) = \pi - n$$

$$V'(n) = Co(2n)$$

$$V(x) = \frac{3h(2n)}{4}$$

$$A(x) = 2 \left[\left(\frac{\pi - n}{2} \right) \frac{3h(2n)}{4} \right]^{\frac{1}{2}} + \frac{1}{4} \int_{0}^{\pi} 3h(2n) dx$$

$$\frac{2}{2} \int_{0}^{\pi} \sin(\lambda n) dn = \frac{2}{42} - \left[\cos \lambda n\right]^{\pi}$$

$$\frac{2}{2} \left[\cos \lambda \pi - 1\right]$$

Scanned with