Efficacy of nonsurgical periodontal therapy for treatment of periodontitis: practical application of current knowledge

Sultan Albeshri, BDS, MS ▪ Gary Greenstein, DDS, MS

This article summarizes the practical application of current knowledge with respect to nonsurgical treatment of periodontitis. The benefits of nonsurgical therapy with or without adjunctive therapies are discussed. The dental literature was searched for articles that addressed outcomes related to mechanical nonsurgical therapy with or without adjunctive aids to treat periodontitis. The classic periodontal literature was assessed for relevant information, and recent systematic reviews and meta-analyses of adjunctive therapies (published within the last 5 years) were evaluated. Mechanical nonsurgical periodontal therapy can provide a predictable result for the treatment of periodontitis in many situations. Unnecessary cementum removal should be avoided because it can cause root sensitivity and loss of clinical attachment in shallow probing depths. Manual and ultrasonic instruments are both effective for treating periodontitis. Depending on the clinician’s preference, either manual or ultrasonic instrumentation can be used because both methods achieve equivalent results when treating most cases of periodontitis. Full- and partial-mouth scaling and root planing (SRP) are both effective therapies. At present, clinical trials have failed to show that lasers—whether used as a monotherapy or an adjunct to SRP—provide a significant clinical benefit compared with nonsurgical therapy. To date, studies have shown that the use of systemic and local drug delivery, photodynamic therapy, and probiotics as adjuncts to SRP yields modest improvements compared with SRP alone.

Periodontal disease is a public health problem in the United States. It is estimated that about 42% of dentate adults older than 30 years develop periodontitis. This chronic inflammatory disease is associated with microbial dysbiosis and is characterized by loss of clinical attachment and bone. An individual’s susceptibility to periodontitis and the disease progression depend on complex interactions among subgingival microbes, the host’s genetic factors, and acquired environmental stressors.

The goals of periodontal treatment are to prevent, control, and/or eliminate signs of periodontal disease. Successful periodontal therapy includes the removal of bacterial accretion to attain a clean root surface, elimination of inflammation, reduction in probing depth (PD), gain in clinical attachment level (CAL), arrest of disease progression, and restoration of normal function. These objectives should be achieved in an efficient manner with minimal discomfort for the patient and should produce long-term effects that can be maintained. Periodontal therapy can be separated into 2 categories: nonsurgical and surgical. Nonsurgical therapy includes adequate personal plaque control, mechanical instrumentation (ie, scaling and root planing [SRP]), and possible adjunctive aids such as systemic antibiotics, local delivery of therapeutic agents, photodynamic therapy (PDT), lasers, and probiotics (Table 1). The purpose of this review is to discuss what has been learned with respect to the efficacy of nonsurgical mechanical therapy—with or without adjunctive aids—for treating periodontitis.

Methods
Relevant and pertinent information was obtained from early scholarly studies that were published prior to the systematic reviews. In addition, recent systematic reviews and meta-analyses evaluating the outcomes of nonsurgical mechanical therapy with or without adjunctive aids to treat periodontitis (published within the last 5 years) were found by searching the PubMed (MEDLINE), Ovid, Embase, Google Scholar, and Cochrane Reviews databases using the search term “periodontitis and nonsurgical therapy of periodontal diseases.” Systematic reviews were incorporated into this article to succinctly summarize multiple recent articles on diverse subjects. Relevant articles were manually searched to determine whether additional articles could be included in this review.

Interpretation of statistical significance
The term statistically significant results means that the differences found between the test and control groups did not occur by chance. However, it does not indicate that these differences...
are actually large or important; therefore, clinicians have to determine whether the results are clinically significant as well. One interpretation of clinical meaningfulness is that the findings may alter the way a patient is treated.

Outcomes of SRP

Wound healing and expected results

Periodontal outcomes after mechanical nonsurgical therapy depend on several factors, including initial PDs, degree of gingival inflammation, and the patient’s hygiene and systemic health. A direct relationship between changes in CAL and initial PD has been observed. Maximum gain in CAL and reduction in PD occur at sites with deep pockets (≥ 7 mm). In contrast, SRP results in CAL loss at shallow probing sites (1 to 4 mm).

Wound healing and expected results may initially disrupt the long junctional epithelium and the PD immediately after SRP during maintenance visits, because SRP may initially disrupt the long junctional epithelium and the PD may measure deeper than initially recorded.

Loss of tooth structure

The quantity of cementum removed during nonsurgical mechanical therapy depends on several factors: modality of treatment (eg, sonic or ultrasonic scalers, hand instruments, or a diamond bur), softness of diseased roots, pressure application, instrumentation time, and sharpness and number of strokes. The cementum becomes thicker as it approaches the apex of teeth. Maximum cementum thickness ranges from 25 to 1140 μm in maxillary molars and 20 to 700 μm in mandibular molars.

Ritz et al found that low instrument pressure (3.0 N) resulted in cementum loss of approximately 30 μm with 5 strokes; when higher instrument force (8.5 N) was applied, the reduction of cementum increased to 100 μm with the same number of strokes. The data indicate that cementum is lost due to SRP; therefore, if there are no mechanically attached deposits on the roots and a site is healthy, it is recommended that treatment of that site during therapy or maintenance visits be limited to removal of plaque from the sulci. This will avoid unnecessary cementum removal that could cause root sensitivity and loss of CAL in shallow probing depths.

Elimination of endotoxins

Endotoxin is a lipopolysaccharide deposited on the roots of teeth and is derived from the cell walls of gram-negative bacteria. Studies have quantified the amount of endotoxin found on roots affected by periodontitis (20 to 394 ng) and healthy roots (0.05 to 0.45 ng). Contrary to historical thinking, which held that cementum must be removed to eliminate endotoxins, it is currently understood that endotoxins are lightly bound to the root surface and can be removed easily with gentle washing, brushing, or ultrasonic instrumentation. Therefore, aggressive removal of cementum to provide a root surface free of endotoxins is unnecessary.

Table 1. Adjunctive therapies used with nonsurgical periodontal therapy.

<table>
<thead>
<tr>
<th>Adjunctive therapy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic antibiotics</td>
<td>Amoxicillin, metronidazole, azithromycin, clindamycin, doxycycline, tetracycline, or a combination of drugs</td>
</tr>
<tr>
<td>Locally delivered antibiotics</td>
<td>Tetracycline fibers, chlorhexidine chips, minocycline microspheres, metronidazole gel, or doxycycline hyclate gel</td>
</tr>
<tr>
<td>Photodynamic therapy</td>
<td>Dynamic interaction of photosensitizer, low-intensity laser, and molecular oxygen</td>
</tr>
<tr>
<td>Laser therapy</td>
<td>Neodymium-doped yttrium-aluminum-garnet (1064 nm), carbon dioxide (10,600 nm), erbium-doped yttrium-aluminum-garnet (2940 nm), or erbium, chromium–doped yttrium-scandium-gallium-garnet (2780 nm)</td>
</tr>
<tr>
<td>Probiotics</td>
<td>Lozenges or tablets containing Lactobacillus reuteri or Bifidobacterium sp, among others</td>
</tr>
</tbody>
</table>
Efficacy of nonsurgical periodontal therapy for treatment of periodontitis: practical application of current knowledge

Hand vs power-driven instrumentation

Mechanical therapy with hand or power-driven instrumentation (eg, ultrasonic debridement) is used to perform nonsurgical periodontal therapy. Power-driven devices can be divided into sonic and ultrasonic scalers. Advantages provided by power-driven instruments include less fatigue, reduced working time, and the ability to access the root furcations (approximately 1 mm wide) due to the thinness of the ultrasonic tips. However, the use of these devices reduces tactile sensation.

Several recent systematic reviews reported no statistically significant differences concerning PD reduction, CAL gain, or the decrease in microbial deposits when hand and power-driven instrumentation were compared for treatment of chronic periodontitis. These data support the concept that hand and ultrasonic instruments are both effective for removing supragingival and subgingival plaque and calculus, decreasing gingival inflammation, and achieving PD reduction and CAL gain. Therefore, depending on the clinician’s preference, either mode of root instrumentation is satisfactory.

Full-mouth vs quadrant approach

Historically, SRP has been performed 1 quadrant at a time. To increase efficiency, Quirynen et al introduced the concept of 1-stage full-mouth disinfection using full-mouth SRP. This protocol was performed within 24 hours with or without the use of antiseptics (eg, chlorhexidine rinse).

Conceptually, the advantages of the full-mouth approach include the prevention of cross-contamination from untreated pockets and a reduction in the number of treatment visits. A critical commentary about this procedure concluded that conflicting data from different treatment centers precluded a definitive conclusion as to whether full-mouth therapy provides a clinically relevant improvement beyond that attained with partial-mouth therapy. Subsequently, others observed no significant differences when full- and partial-mouth disinfection were compared. In contrast, a recent systematic review reported that, in teeth with moderate PD (5 to 6 mm), full-mouth disinfection provided small benefits beyond SRP performed a single quadrant at a time; the mean increase in PD reduction was 0.25 mm, and the improvement in CAL was 0.33 mm.

In summary, full-mouth disinfection and partial disinfection therapy are both effective modalities for the treatment of periodontitis. The determination as to whether to use full- or partial-mouth disinfection therapy depends on the clinician’s and/or patient’s preference.

Single vs multiple sessions

Conflicting results have been reported with respect to the effectiveness of single vs repeated mechanical sessions of nonsurgical therapy. Magnusson et al demonstrated a reduction in mean PD from 7 to 6 mm after a single scaling session, and a second session decreased PD to 4.9 mm. Similarly, Listgarten et al reported a reduced PD from 7 to 5.3 mm after 2 to 4 SRP visits; a few months later, additional SRP decreased the mean PD to 4.8 mm. In contrast, when Badersten et al compared the outcomes of single vs repeated sessions of SRP, they noted no additional improvement in mean PD reduction, and Caton et al also observed similar outcomes after single and multiple episodes of SRP. The discrepancy in results may be due to
the efficiency of the mechanical procedures, differing severity of the treated probing depths, the time allotted for procedures, and the personal hygiene performed by the patients.

Efficacy of SRP plus adjunctive therapies
A number of systematic reviews published within the last 5 years have examined the outcomes of adjunctive therapies to treat periodontitis. Table 2 presents the results of recent systematic reviews that included meta-analyses of outcomes.⁵ ⁶

<table>
<thead>
<tr>
<th>Study</th>
<th>RCTs, n°</th>
<th>Intervention</th>
<th>Follow-up, mo</th>
<th>Outcomes compared with SRP alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khattri et al (2020)⁶</td>
<td>45</td>
<td>SRP + systemic antibiotics</td>
<td>12</td>
<td>SRP + systemic antibiotics achieved minimally greater PD reduction and CAL gain (MD = 0.3-0.4 mm), but the differences were clinically insignificant.</td>
</tr>
<tr>
<td>Herrera et al (2020)⁹</td>
<td>50</td>
<td>SRP + locally delivered antibiotics</td>
<td>6-9; 12-60</td>
<td>Short-term (6-9 mo): SRP + locally delivered antibiotics achieved significantly greater PD reduction (MD = 0.36 mm) and CAL gain (MD = 0.26 mm). Long-term (12-60 mo): SRP + antibiotics achieved significantly greater PD reduction (MD = 0.19 mm); there was no difference between groups in CAL.</td>
</tr>
<tr>
<td>Zhao et al (2020)⁹</td>
<td>7</td>
<td>SRP + CHX gel</td>
<td>6</td>
<td>Application of SRP + CHX gel at selected sites achieved minimal improvement in PD reduction (MD = 0.15 mm) and no difference in CAL gain at 3 months. Full-mouth application of SRP + CHX resulted in no significant difference in PD or CAL changes at 3 or 6 mo of follow-up.</td>
</tr>
<tr>
<td>Salvi et al (2020)¹³</td>
<td>8</td>
<td>SRP + PDT</td>
<td>6</td>
<td>There was no statistically significant difference in PD or CAL.</td>
</tr>
<tr>
<td>Xue et al (2017)¹⁴</td>
<td>11</td>
<td>SRP + PDT</td>
<td>3-6</td>
<td>Short-term (3 mo): SRP + PDT achieved significantly greater PD reduction (MD = 0.13 mm) and CAL gain (MD = 0.18 mm). Long-term (6 mo): SRP + PDT achieved significantly greater PD reduction (MD = 0.4 mm) but no difference in CAL gain.</td>
</tr>
<tr>
<td>Lin et al (2021)¹⁹</td>
<td>8</td>
<td>Laser (mostly Er:YAG)</td>
<td>6</td>
<td>There was no statistically significant difference in PD reduction (MD = 0.14 mm) or CAL gain (MD = 0.04 mm).</td>
</tr>
<tr>
<td>Li et al (2021)²⁰</td>
<td>16</td>
<td>Er,Cr:YSGG laser</td>
<td>3-6</td>
<td>Short-term (3 mo): Laser achieved statistically significant improvement in PD (MD = 0.34 mm) and CAL (MD = 0.71 mm). Long-term (6 mo): There was no statistically significant difference in PD or CAL.</td>
</tr>
<tr>
<td>Ho et al (2020)²⁴</td>
<td>10</td>
<td>SRP + probiotics</td>
<td>3-12</td>
<td>SRP + probiotics achieved significantly greater PD reduction (MD = 0.18 mm) and CAL gain (MD = 0.21 mm) at 3 and 12 mo.² There was no statistically significant difference at 6 or 9 mo. There was no statistically significant difference in periodontal pathogen levels at 3 mo.</td>
</tr>
</tbody>
</table>

Abbreviations: CAL, clinical attachment level; CHX, chlorhexidine; Er,Cr:YSGG, erbium, chromium–doped yttrium-scandium-gallium-garnet; MD, mean difference; PD, probing depth; PDT, photodynamic therapy; RCT, randomized controlled trial; SRP, scaling and root planing.

²Inclusion was limited to RCTs in all meta-analyses.

³Compared with SRP + placebo.

Antibiotics are prescribed to reinforce mechanical periodontal treatment and support host defense in select groups of patients with periodontitis, such as patients who do not respond to conventional mechanical therapy, patients with active infections, or medically compromised patients.⁷⁻⁹ Systemic antibiotics have several advantages, including low cost, convenience for the patient, and the ability to cause a reduction in intraoral microbes.⁷⁻⁹ Disadvantages include difficulty achieving a high drug concentration in the gingival crevicular fluid, the risk of drug interactions, the possibility of developing antibiotic-resistant bacterial strains, and the dependence on patient compliance.⁷¹⁻⁷³

In a systematic review, Haffajee et al reported that the mean benefit of using SRP plus adjunctive antibiotics compared with SRP alone was about a 0.3- to 0.4-mm gain in CAL.⁵ It is possible that subjects with aggressive or severe periodontitis may attain a greater benefit from systemic antibiotics. Another recent systematic review by Khattri et al compared the benefits...
of adjunctive systemic antibiotics (amoxicillin, metronida-
zo, Augmentin, tetracycline, doxycycline, azithromycin, or
clindamycin) with SRP alone. They found that SRP plus an
antibiotic provided a modest beneficial effect with respect to
PD reduction and CAL gain, both ranging from 0.3 to 0.5 mm.
However, there was insufficient evidence to determine whether
some antibiotics are better than others when used with SRP.

Adjunctive systemic antibiotics should be sensibly admin-

istered and restrictively used. They should be reserved for
patients who do not respond to conventional therapy or who
have an active infection. However, there may be situations
where the gingival tissues are extremely edematous, hemor-

dhagic, and sensitive, and it may be beneficial to prescribe an
antibiotic such as metronidazole for 1 week (500 mg. 3 times a
day for 7 days) prior to any root instrumentation or probing so
that the patient can be assessed and treated more comfortably
(eg, for necrotizing periodontal diseases) at the next visit.

Locally delivered antibiotics and antiseptics

Local delivery of antibiotics provides certain advantages, includ-
ing minimally invasive targeted therapy, a high concentration
of drugs in the gingival crevicular fluid, reduced antibiotic
adverse effects, and decreased development of bacterial resis-
tance strains. The success of local drug delivery depends on
several factors: the ability to deliver the medication to the base
of the pocket, the medication’s prolonged retention to attain an
effective outcome, and increased drug dosage. Several delivery
systems have been investigated, including tetracycline fibers,
metronidazole gel, chlorhexidine chips, minocycline micro-

spheres, and doxycycline hyclate gel.

A recent systematic review reported that statistically signifi-
cant differences in PD reduction (0.36 mm) and CAL gain (0.26
mm) were noted 6 to 9 months after therapy with SRP plus local
drug delivery (tetracycline fiber, chlorhexidine chips, minocy-

cline microspheres, or doxycycline hyclate gel) compared with
SRP alone. However, long-term data (12 to 60 months) revealed
minimal benefits with respect to PD reduction (0.19 mm) and
CAL gain (0.09 mm). Specifically, a phase III trial of mino-
cycline hydrochloride microspheres suggested that the drug
therapy plus SRP provided a small but statistically significant
benefit, measured in tenths of millimeters, compared with SRP
alone. At probing depths ≥ 5 mm, the decreases in PD were
1.32 mm after combined therapy and 1.08 mm after SRP alone,
and at sites ≥ 6 mm, the decreases were 1.46 and 1.05 mm in
the combined therapy and SRP-alone groups, respectively. The
percentages of sites with a 2-mm decrease in PD were 41% after
combined therapy and 33% after SRP alone.

Overall, the data suggest that locally delivered antibiotics
and antiseptics provide a minor improvement as an adjunct to
conventional nonsurgical treatments; therefore, it is unnecessary
to routinely use combined therapy. However, local drug delivery
may be indicated for nonresponding sites or for patients with
recurrent disease who need an alternative treatment approach.

Photodynamic therapy

Photodynamic therapy is a localized minimally invasive thera-

peutic modality. The mechanism of action of PDT includes
3 main agents: a photosensitizer (eg, methylene blue), a
low-intensity laser (usually a diode laser), and molecular
oxygen. The laser is used to activate the photosensitizer, which
is bound to a target cell. The activated photosensitizer reacts
with molecular oxygen to produce highly reactive, oxygen-free
radicals, which are cytotoxic to a variety of microorganisms. In
animal studies, it was noted that PDT provided a benefi-
cial effect against putative periodontal pathogens such as
Aggregatibacter actinomycetemcomitans and Porphyromonas
gingivalis. However, human studies have shown inconsistent
outcomes in the treatment of periodontitis with PDT. A recent systematic review indicated that PDT plus nonsurgical
therapy provided a small benefit compared with SRP alone (approximately 0.5-mm additional CAL gain). In contrast, another systematic review that compared PDT plus SRP with
SRP alone demonstrated no significant difference with respect to
CAL gain.

In summary, some short-term data show a minimal improve-
mend in PD reduction and CAL gain when PDT is used in con-
junction with SRP. At present, there is limited evidence pertaining
to the long-term efficacy of PDT as an adjunctive therapy.

Laser therapy

A number of different laser types have been used as an
alternative therapy or as an adjunct to conventional non-
surgical mechanical therapy. Examples of commercially
available lasers and their wavelengths include Nd:YAG (1064
nm), carbon dioxide (10,600 nm), Er:YAG (2940 nm), and
erbium, chromium–doped yttrium-scandium-gallium garnet
(Er,Cr:YSGG; 2780 nm). Animal and human studies have
demonstrated that lasers have the ability to remove plaque,
diseased cementum, and granulomatous tissues as well as to
decrease the amount of putative periodontal bacteria with-
out significantly altering root morphology. Laser therapy
provides a statistically significant improvement with respect to
PD reduction (0.34 mm) and CAL gain (0.71 mm) when compared with SRP alone. However, after 6 months, there
were no significant differences in clinical parameters. A system-
atic review by Lin et al compared the treatment effects of lasers
as a monotherapy with SRP alone in periodontitis patients. They reported similar outcomes in PD reduction and CAL gain for both techniques.

To clarify the status of laser therapy, the American Academy of
Periodontology provided a best evidence consensus report
addressing the use of lasers alone and as adjuncts to mechanical
therapy. The report concluded that the current data are insuffi-
cient to determine whether laser therapy alone is better than
or equal to conventional periodontal therapy with respect to PD
reduction or CAL gain for treating moderate to severe chronic
periodontitis. With regard to using a laser as an adjunct to
mechanical treatment, it was determined that current data suggest comparable or marginally better clinical results compared with laser therapy alone in the treatment of periodontitis. This subject remains controversial; for example, Clem et al recently reported that laser therapy utilizing Er,Cr:YSGG showed results similar to those of the minimally invasive surgical technique in intrabony defects. Laser therapy may be a promising adjunct or alternative therapy; however, at present, clinical trials have failed to demonstrate that lasers provide a significant clinical benefit compared with nonsurgical mechanical therapy alone.

Probiotics

According to the Food and Agriculture Organization/World Health Organization, probiotics are defined as “Live microorganisms which when administered in adequate amounts confer a health benefit on the host.” Possible mechanisms of action have been proposed, including host modulation, restoration of the oral microbial ecologic balance, and an antibiotic effect. A systematic review reported a statistically significant short-term clinical benefit with respect to CAL gain (0.42 mm) and PD reduction (0.67 mm) at deep sites when probiotics were used in conjunction with SRP. Similarly, Ho et al conducted a meta-analysis to assess the clinical, microbiologic, and immunologic outcomes of probiotics as an adjunct to nonsurgical mechanical therapy. The study found that the probiotic group with SRP showed a small benefit, compared with SRP alone, of decreased PD (0.18 mm) and gain in CAL (0.21 mm) at 3 months, but this benefit was not noted after 6 months. In addition, there was no statistically significant difference between the groups in periodontal pathogen levels at 3 months.

There is a major heterogeneity issue among studies with regard to probiotic dosage, duration, assessed bacterial strains, and patient characteristics, which makes it difficult to reach a conclusion about the ability of probiotics to enhance nonsurgical therapy. At present, the data suggest that the use of probiotics as an adjunct to nonsurgical therapy may provide a very small, short-term effect, but this benefit does not appear to last 6 months.

Effectiveness of SRP vs surgical debridement

Several longitudinal multicenter clinical trials in the 1970s compared the effects of nonsurgical and surgical treatment with respect to PD reduction, CAL gain, and resolving gingival inflammation. They revealed that SRP and flap surgery for access were both effective treatment modalities for management of various stages of chronic periodontitis. However, in these clinical trials, root instrumentation was frequently done to the bone, and patients required sutures at the end of the procedures. In addition, definitive SRP (sole and final therapy, about 1 hour per quadrant) is one of the most demanding technical procedures in periodontics, and the efficacy of root surface debridement decreases when probing depths are 5 mm or greater.

Therefore, based on the complexity of the situation and the skill of the clinician, either nonsurgical or surgical therapy can be used to manage periodontitis. However, in the presence of deep PDs and osseous defects where guided bone regeneration is desired, surgery is usually advantageous to gain access for debridement of roots and osseous defects. Thus, depending on the response to nonsurgical therapy and the objectives of therapy, it is up to the clinician’s best judgment as to whether surgical therapy is needed.

Frequency of maintenance visits

Periodontal maintenance is a critical determinant for long-term success of periodontitis treatment. Patients with a history of periodontitis may need to be seen every 3 months to reduce the bacterial challenge so that the immune system can maintain homeostasis. The frequency of maintenance visits also must be tailored to the patient’s level of personal hygiene, history of periodontal conditions, and number of residual deep PDs.

Conclusion

Nonsurgical periodontal therapy is an effective therapeutic modality for reducing signs of inflammation and improving clinical and microbiologic parameters. A prodigious amount of information is available, and a review of the literature identified several trends with respect to mechanical instrumentation of roots with and without adjunctive procedures:

- Mechanical nonsurgical periodontal therapy can provide a predictable outcome for the treatment of periodontitis in many situations. Patients need continuous maintenance and must be monitored postoperatively to ensure that disease activity does not return.
- Adjunctive therapy with systemic antibiotics should be sensibly administered and restrictively used. In general, this therapy should be reserved for patients who do not respond to conventional therapy.
- Laser therapy may be a promising adjunct to SRP and/or an alternative therapy. However, at present, clinical trials have failed to show that lasers provide a significant clinical benefit compared with nonsurgical therapy.
- To date, studies suggest that the use of local antibiotic or antiseptic delivery, PDT, or probiotics as an adjunct to SRP yields modest improvements.

Author affiliations

Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia (Albeshri); Department of Periodontics, College of Dental Medicine, Columbia University, New York, New York (Greenstein); Private practice, Freehold, New Jersey (Greenstein).

References

Efficacy of nonsurgical periodontal therapy for treatment of periodontitis: practical application of current knowledge

