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Abstract
Stabilization of underactuated mechanical systems is one of the fundamental benchmark problem in the field of control
theory. In this article, a hierarchical sliding mode control based on state-dependent switching gain is proposed for stabili-
zation of underactuated mechanical systems. This controller is based on the so called first-level and second-level sliding
surfaces. The asymptotic stability of these surfaces is proved by the Lyapunov stability theory. The proposed control
technique is applied to two nonlinear underactuated mechanical systems and its feasibility is verified by numerical simula-
tion. The proposed controller efficiently tackles the bounded external disturbance and shows robust performance. The
convergence rate of the proposed controller is much faster as compared with the conventional decoupled sliding mode
control and the integral sliding mode control.
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Introduction

The design of nonlinear controllers for mechanical sys-
tems has become an active field of research from the
last few decades.1 From a theoretical point of view, this
attention can be attributed to their interesting dynami-
cal behavior, which is well-suited for the validation and
practical application of ideas emerging in control the-
ory. However, recent technological advances have pro-
duced many real-world engineering applications that
require the automatic control of mechanical systems.2

An underactuated mechanical system is a system
that has a fewer number of control input actuators than
the degrees of freedom of the system. These systems are
widely used in spacecrafts, underwater vehicles, mobile
robots, surface vessels, and many other systems. Due to
numerous practical applications of these systems, many
researchers have worked to find reliable mechanisms
for the control of underactuated mechanical systems.
Stabilization of these systems is a fundamental

benchmark problem. These systems cannot be stabi-
lized by smooth feedback because their dynamics are
governed by differential equations in the presence of
some non-integrable differential conditions.1,3–5 The
development of new control techniques and numerical
tools have played a significant role in recognition and
explaining the concept of stabilization. However, it is
still an open and challenging task for researchers.

1Department of Mathematics and Statistics, The University of Lahore,

Sargodha, Pakistan
2Department of Mathematics, Government College University, Lahore,

Pakistan
3Department of Mathematics, Mirpur University of Science and

Technology (MUST), Mirpur, Pakistan

Corresponding author:

Saif Ullah, Department of Mathematics, Government College University,

Katchery Road, Lahore 54000, Pakistan.

Email: dr.saifullah@gcu.edu.pk

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://doi.org/10.1177/1687814019842712
https://journals.sagepub.com/home/ade
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1687814019842712&domain=pdf&date_stamp=2019-05-06


Many techniques have been proposed to solve the
stabilization problem for underactuated mechanical
systems.6–13 Most of the suggested control approaches
undergo from either the oscillatory behavior, slow con-
vergence rate, or lack of robustness against the external
disturbances. The problem of robustness and slow con-
vergence can be solved using sliding mode control
(SMC). Due to inherent robustness properties of SMC,
it has been widely used for stabilization of nonlinear
systems. It has been used to design a controller for
robotics,14–16 under-actuated cranes,17–20 unmanned
aerial vehicle (UAV) quadrotors,21 and under-actuated
vessels.22 SMC technique, which is a powerful approach
to handle internal and external disturbances, was intro-
duced in the literature.23–25 The results developed by
these techniques were very interesting. The control
designed by these techniques had the ability to handle a
class of uncertainties. However, these techniques
require the use of virtual disturbances to satisfy some
conditions. These controllers also require a lot of calcu-
lations that increase the computational burden.

Recently, many researchers have been showing their
interest in combination of fuzzy logic control (FLC)
and SMC which is referred to fuzzy SMC.26–28 Fuzzy
SMC has advantages of both FLC and SMC. However,
there are some drawbacks of this technique. For higher
order systems, the number of fuzzy sets and fuzzy rules
becomes incredibly large, which compromises the
applicability of this technique. An often remarked
drawback of methods based on fuzzy logic is the lack of
appropriate tools for analyzing the controller perfor-
mance, such as stability, optimality, and so on. The
SMC technique consists of two distinct phases. One is
reaching phase and the other is sliding phase. In the
reaching phase, the system states are forced toward the
sliding surface while in the sliding phase, the system tra-
jectories drive along the sliding surface.

A known limitation of SMC technique is chattering.
To overcome this problem, Slotine proposed adopting
thin boundary layer neighboring switching surfaces, by
replacing the sign function with a saturation function.29

The chattering phenomenon can be removed com-
pletely by utilizing observer. The main idea of using
observers to prevent chattering is to generate an ideal
sliding mode in the auxiliary loop including the obser-
ver.30 Another way to reduce chattering without design-
ing any asymptotic observer is to use state-dependent
switching gain.31 With the choice of state-dependent
switching gain and saturation function, the chattering
effect becomes negligible. The main goal of this article
is to design nonlinear SMC for a class of mechanical
systems based on state-dependent switching gain which
is robust for bounded external disturbances, chattering
free, and have low complexity and computational
burden.

Using switching gain which are functions of the sys-
tem states, the SMC guarantees the robustness and
faster convergence. We design the proposed controller
for stabilization of inverted pendulum (IP) and ball-
beam systems, and simulate it using MATLAB. The
simulation results show effectiveness of our proposed
controller.

Problem statement

The general form of a class of underactuated mechani-
cal systems is given by

_x1 = x2

_x2 = g1(x)+ b1(x)t +D

_x3 = x4

_x4 = g2(x)+ b2(x)t +D

..

. ..
. ..

.

_x2m�1 = x2m

_x2m = gm(x)+ bm(x)t +D

9>>>>>>>>>=
>>>>>>>>>;

ð1Þ

where x1, x2, x3, . . . , x2m are state variables, gm(x) and
bm(x) are defined as nonlinear functions of state vari-
ables, t is control input, and D is bounded external dis-
turbance.32 Different nonlinear underactuated
mechanical systems can be presented in the form of sys-
tem (1) with different nonlinear functions gm(x) and
bm(x). If m= 2, then system (1) represents overhead
crane system, IP system, and so on. Similarly, for
m= 3, system (1) represents the double rotary IP sys-
tem, the double IP system, and so on. We can also
write system (1) as follows

_x2k�1 = x2k

_x2k = gk(x)+ bk(x)t +D

�
ð2Þ

where k = 1, 2, 3, . . . ,m. The control objective is to
design a t such that as states of the system quickly con-
verge to the equilibrium point in presence of external
disturbances.

Control design

SMC due to simplicity of design has been successfully
employed for solving nonlinear control problems.33–36

It was first used in 1960s and its basic formulations are
due to the work of Utkin.37 Utkin provided the defini-
tion of sliding surface from which equivalent control is
derived. In 1978, Utkin and Yang continued their work
and derived the term nonlinear switching from linear
state space derivation which ensures the robustness of
SMC.38 SMC is based on the concept of the sliding sur-
face, and it switches the system trajectories on this slid-
ing surface. The total control input is a combination of
switching control and equivalent control, that is
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t = teq + tsw ð3Þ

where tsw is designed to switch system trajectories onto
sliding surface and teq is designed to keep system trajec-
tories in closed neighborhood of sliding surface.
Stabilization of underactuated mechanical systems has
become a benchmark to verify the effectiveness of new
control techniques. These systems are distinguished by
the fact that they have fewer actuators. There are many
examples of these systems such as manipulators, robots,
and industrial equipment. The dynamics of these sys-
tems mostly contain feedback nonlinearities, couplings,
nonholonomic constraints, and non-minimum phase
zero dynamics, which makes it difficult to design con-
trollers for these systems.

In this article, we are focusing on a class of non-
linear underactuated mechanical systems. SMC is a
powerful and robust nonlinear feedback control
method. However, for underactuated systems, design-
ing a conventional single layer sliding surface is not
appropriate because the parameters of the sliding mode
surface can not be obtained directly according to the
Hurwitz condition. The physical structure of the con-
sidered class also matters as it can be divided into sev-
eral subsystems. Based on this structure, a simple way
to design the sliding mode surface for this class was
needed. To overcome this problem, Qian et al.39 pro-
posed a hierarchical sliding mode control (HSMC) for
such a class of underactuated systems.

HSMC is a systematic and effective design proce-
dure, which has both theoretical and practical signifi-
cance. It fills the gap between SMC and its applications
to underactuated mechanical systems.40 It is composed
of two types of sliding surfaces: the first-level sliding
surfaces and a second-level sliding surface. The number
of first-level sliding surfaces depends upon the number
of subsystems and the second-level sliding surface is a
linear combination of all first-level sliding surfaces. The
schematic structure of the surfaces of HSMC is illu-
strated in Figure 1.

In order to reduce the response time of convergence
and decrease chattering phenomenon, we proposed to
design state-dependent switching gain instead of a con-
stant switching gain. Both, first-level and second-level
sliding surfaces, are asymptotically stable in the pro-
posed control design scheme. Numerical simulations
validate the effectiveness of the proposed HSMC. To
design this controller, we start by defining the first-level
sliding surfaces as follows

sk = .k x2k�1 + x2k ð4Þ

where .k is a positive constant. Differentiating equation
(4) with respect to t and using equations given in system
(2), we get

_sk = .k _x2k�1 + _x2k ð5Þ

_sk = .k x2k + gk + bkt +D ð6Þ

The equivalent control of the kth subsystem can be
obtained by assuming _sk = 0 and it is given by

teqk = � .k x2k + gk +D

bk

ð7Þ

Now, we define the second-level sliding surface as
follows

O=
Xm

k = 1

lk sk ð8Þ

where lk is a real constant. Differentiating equation (8)
with respect to t, we have

_O=
Xm

k = 1

lk _sk ð9Þ

In order to derive a control law which drives the tra-
jectories of the system to the sliding surface O, we
define a Lyapunov function as follows

V =
O2

2
ð10Þ

_V =O _O ð11Þ

_V =O
Xm

k = 1

lk _sk

" #
ð12Þ

_V =O
Xm

k = 1

lk(.kx2k + gk + bkt +D)

" #
ð13Þ

_V =O
Xm

k = 1

lk(.kx2k + gk + bk(teq + tsw)+D)

" #
ð14Þ

Figure 1. Schematic structure of sliding surfaces for HSMC.
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_V =O
Xm

k = 1

lk � bk � tsw

" #
ð15Þ

We design _O as

_O= � e � sat(O) ð16Þ

where ‘‘sat’’ is the saturation function and e is a switch-
ing gain. The saturation function in the form of sign
function is defined as41

sat(O)=
sgn(O), if Oj jø 1

O, if Oj j\1

�

and

sgn(O)=
+1, if O.0

�1, if O\0

�

The switching gain can be selected in two ways: one
is the switching gain with a constant value e and the
other is the switching gain e(x) which is a function of
the state variables. If the switching gain is selected as a
constant, then it must be a positive constant to fulfill
the stability condition for second-level sliding surface.
We proposed a state-dependent switching gain for fast
convergence of the system states in presence of bounded
external disturbances, that is

e(x)=b(O2 + g) ð17Þ

where b and g are positive constants. The switching
control law obtained from equations (15) and (16) is
given by

tsw =
�e(x) � sat(O)Pm
k = 1

lk�1 � bk

ð18Þ

Theoretical stability

This section consists of two theorems which deal with
the asymptotic stability of the second-level sliding sur-
face and the first-level sliding surfaces. To prove these
theorems, we use the Lyapunov stability theory and the
Barbalat lemma.29

Theorem 1 (Asymptotic stability of second-level sliding
surface). Consider the class of underactuated systems
given in system (2). If we use the control law given in
equation (3) along with sliding surfaces designed in
equations (4) and (8), then the second-level sliding
surface is asymptotically stable.

Proof. Consider the Lyapunov function defined in equa-
tion (10)

V =
1

2
O2

Differentiating both sides with respect to t, we get

_V =O � _O

_V = � e(x) � O � sat(O)

Integrating both sides from 0 to t, we have

ðt

0

_Vdx =

ðt

0

�e(x) � O � sat(O)dx

V (t)� V (0)=

ðt

0

�e(x) � O � sat(O)dx

V (0)=V (t)+

ðt

0

e(x) � O � sat(O)dx

V (0)ø

ðt

0

e(x) � O � sat(O)dx

) lim
t!‘

ðt

0

e(x) � O � sat(O)dx ł V (0)\‘ ð19Þ

According to the Barbalat lemma29

lim
t!‘

e(x) � O � sat(O)= 0 ð20Þ

Therefore, lim
t!‘

O= 0. Hence second-level sliding
surface is asymptotically stable.

Theorem 2 (Asymptotic stability of first-level sliding
surfaces). Consider the underactuated system given in
system (2). If the control law is adopted as given in
equation (3) with sliding surfaces designed in equations
(4) and (8), then the first-level sliding surfaces are
asymptotically stable.

Proof. The proof of this theorem is quite simple. From
equation (15) and considering that _V =O _O\‘, we can
write

O, _O 2 L‘

where L‘ denotes the space of all bounded functions. It

follows from equations (8) and (9) that
Pm

k = 1

lk sk and

Pm
k = 1

lk _sk both represent linear combinations of both

bounded functions. It means that sk , _sk 2 L‘.
Therefore

sup
t ø 0

jsk j= k skk‘\‘) lim
t!‘

sk = 0
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Simulation results and discussion

The proposed controller is simulated in MATLAB and
results are compared with the decoupled sliding mode
controller (DSMC) and the integral sliding mode con-
troller (ISMC). Consider a linear time-invariant (LTI)
system of the form

_x=Ax+Bt ð21Þ

where A 2 R
n 3 n and B 2 R

n 3 m. The integral surface is
given by

s=Cx�
ðt

0

C(A� BK)x(t)dt ð22Þ

where C 2 R
m 3 n is selected to guarantee that CB is

nonsingular and K 2 R
m 3 n is designed via pole place-

ment such that all eigenvalues of the matrix A� BK lie
in the left half plane. The control input for ISMC is
given by

t = teq + tsw ð23Þ

where teq and tsw are defined as

teq = � Kx

tsw = � (CB)�1½k s+hsgn(s)�

where k and h are positive constants.

Application to IP

IP system is a strongly nonlinear underactuated
mechanical system which is dynamically suitable to test
new control strategies. The structure of IP system is
shown in Figure 2. In case of IP model, system (1) can
be represented as

_x1 = x2

_x2 = g1(x)+ b1(x)t +D

_x3 = x4

_x4 = g2(x)+ b2(x)t +D

The nonlinear functions g1(x), g2(x), b1(x), and b2(x)
are defined as

g1(x)=
mtgsinx1 � mpLsinx1cosx1x2

2

L � 4
3

mt � mp cos2 x1

� �
g2(x)=

� 4
3

mpLx2
2sinx1 +mpgsinx1cosx1

4
3

mt � mp cos2 x1

b1(x)=
cosx1

L � 4
3

mt � mp cos2 x1

� �
b2(x)=

4

3 4
3

mt � mp cos2 x1

� �

where mt =mc +mp. The description of variables and
parameters used in this model is given in Table 1. The
first-level and second-level sliding surfaces for IP system
are defined as

s1 = .1x1 + x2 ð24Þ

s2 = .2x3 + x4 ð25Þ

O= l1s1 + l2s2 ð26Þ

The control input is given by

t = teq1 + teq2 + tsw ð27Þ

where

teq1 =
�c1x2 � g1 � D

b1

ð28Þ

teq2 =
�c2x4 � g2 � D

b2

ð29Þ

tsw =
�e(x) � sat(O)
l1b1 + l2b2

ð30Þ

Figure 2. Structure of the inverted pendulum system.

Table 1. Description of variables and parameters used in
inverted pendulum model.

Symbols Description

x1 Angle of the pole with vertical axis
x2 Angular velocity of the pole
x3 Position of the cart
x4 Velocity of the cart
t Control input
D External disturbances
L Length of the pole
mp Mass of the pole
mc Mass of the cart

Idrees et al. 5



and e(x) is defined in equation (17). The values of
parameters used for simulations are given in Table 3.
We define a bounded external disturbance as
D=rand():sin(t), where MATLAB command
‘‘rand()’’ is used to describe the fluctuation of external
disturbances. Stabilization of the angle of inverted

pendulum is shown in Figure 3 and the position of
the cart is shown in Figure 4. Both figures demon-
strate that the proposed controller is robust and more
efficient as compared with DSMC and ISMC.

Application to ball-beam system

Ball-beam (BB) system is another nonlinear underactu-
ated system. Its structure is illustrated in Figure 5 and
mathematical equations are given as

_x1 = x2

_x2 = t +D

_x3 = x4

_x4 =
mr2

jb +mr2
(x3x2

2 � gsinx1)

The description of different variables and parameters
of ball-beam model is given in Table 2. The sliding sur-
faces are given by

Figure 3. The angle of pendulum with time when system starts from x0 = ½p3 0 0 0�T .

Figure 4. The position of cart with time when system starts from x0 = ½p3 0 0 0�T .

Table 2. Description of variables and parameters used in ball-
beam model.

Symbols Description

x1 Angle of the beam with horizontal axis
x2 Angular velocity of the beam
x3 Position of the ball
x4 Velocity of the ball
t Control input
D External disturbances
m Mass of the ball
r Radius of the ball
jb Moment of inertia of the ball

6 Advances in Mechanical Engineering



s1 = .1x1 + x2 ð31Þ

s2 = .2x3 + x4 ð32Þ

O= l1s1 + l2s2 ð33Þ

The control input is defined as

t = teq + tsw ð34Þ

where

teq = � .1x2 � D ð35Þ

tsw = � e(x) � sat(O)� l1.2x4 �
l1mr2

jb +mr2
(x3x2

2 � gsinx1)

ð36Þ

The values of parameters used in ball-beam model
are given in Table 3. We use the same external distur-
bance as described in the inverted pendulum model.
The change in the dynamics of angle of beam and posi-
tion of the ball are shown in Figures 6 and 7. The simu-
lation results show that the proposed controller has a
faster convergence as compared with DSMC and ISMC
in presence of bounded external disturbances.

We also compare HSMC with the state-dependent
switching gain to HSMC with a constant switching
gain. It can be seen that response time of the proposed
HSMC is much smaller as compared with the conven-
tional constant gain HSMC. Simulation results are
shown in Figures 8 and 9. These results demonstrate
the significance of proposed HSMC over existing
HSMC, DSMC, and ISMC techniques. We also fluctu-
ate the external disturbance to validate the robustness
of proposed HSMC.

Conclusion

In this article, we discussed the general form of a class
of underactuated mechanical systems and presented a
nonlinear control strategy for stabilization of these sys-
tems. We focused on the potential uses of SMC meth-
ods for stabilization of underactuated mechanical
systems. We proposed HSMC based on state-
dependent switching gain. The proposed controller

Figure 5. Structure of the ball-beam system.

Table 3. The values of parameters and constants used in the
simulations of model.

Parameters Values

L 0.5 m
m 0.5 kg
mc 1 kg
mp 0.05 kg
r 0.031 m
g 9.8 ms22

jb 231026

.1 5

.2 0.5
l1 1
l2 –0.388
b 5
g 4

Figure 6. The angle of beam with time when system starts from x0 = ½p3 0 0:8 0�T .

Idrees et al. 7



Figure 8. Comparison of proposed HSMC with existing HSMC in case of IP system.

Figure 7. The position of ball with time when system starts from x0 = ½p3 0 0:8 0�T .

Figure 9. Comparison of proposed HSMC with existing HSMC in case of BB system.

8 Advances in Mechanical Engineering



consists of two first-level sliding surfaces and one
second-level sliding surface which is essential to reduce
chattering phenomenon.

The designed control technique is implemented on
two nonlinear underactuated systems and simulated in
MATLAB. The simulation results demonstrate that the
proposed control technique is much efficient as com-
pared with the existing SMC techniques such as
HSMC, DSMC, and ISMC. The proposed control
technique is robust and has a faster convergence as
compared with these techniques. Furthermore, asymp-
totic stability of first-level and second-level sliding sur-
faces, used in the proposed technique, is also proved by
the Lyapunov stability theory.
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