King Saud University
College of Sciences
Mathematics Department

Academic Year (G) 2019-2020
Academic Year (H) 1441
Bachelor AFM: M. Eddahbi

Solution of Quiz 1 February 12, 2020 ACTU 464

Question (5 marks)

1. Find θ such that $\mathrm{P}\left(Z \leq \Pi_{\mathrm{SL}}(\theta)\right)=\alpha$ if you are given the following: $Z=0.7 X$, and $X \hookrightarrow$ $\mathcal{E x p}(\lambda=2)$ and $\alpha=0.05$.
2. Calculate $\Pi_{\mathrm{SL}}(\theta)$.

Solution

1. We would like to find θ such that

$$
\begin{equation*}
\mathrm{P}\left(\frac{Z-\mathrm{E}[Z]}{\sigma_{Z}} \leq \theta \frac{\mathrm{E}[Z]}{\sigma_{Z}}\right)=1-0.05=0.95 \tag{1}
\end{equation*}
$$

Remark first that $\mathrm{E}[Z]=0.7 \mathrm{E}[X]=0.7 \times 0.5$ and $\sigma_{Z}=0.7 \sigma_{X}=0.7 \times 0.5$, hence $\frac{\mathrm{E}[Z]}{\sigma_{Z}}=\frac{1}{2}$.
Now, the equation (1) becomes

$$
\begin{aligned}
0.95 & =\mathrm{P}\left(\frac{0.7 X-0.5)}{0.5} \leq \theta\right)=\mathrm{P}\left(0.7 X-0.5 \leq \frac{\theta}{2}\right) \\
& =\mathrm{P}\left(X \leq\left(\frac{\theta}{2}+\frac{1}{2}\right) \frac{10}{7}\right)=\mathrm{P}\left(X \leq(\theta+1) \frac{5}{7}\right) \\
& =F_{X}\left((\theta+1) \frac{5}{7}\right)
\end{aligned}
$$

Since X is exponentially distributed with parameter $\lambda=2$ its c.d.f. is $F_{X}(x)=1-e^{-2 x}$, then;

$$
F_{X}\left((\theta+1) \frac{5}{7}\right)=1-\exp \left(-2(\theta+1) \frac{5}{7}\right)=0.95
$$

Solving for θ :

$$
\begin{aligned}
1-\exp \left(-(\theta+1) \frac{10}{7}\right)=\frac{95}{100} & \Longleftrightarrow \exp \left(-(\theta+1) \frac{10}{7}\right)=\frac{1}{20} \\
& \Longleftrightarrow-(\theta+1) \frac{10}{7}=\ln \left(\frac{1}{20}\right)=-\ln (20) \\
& \Longleftrightarrow \theta+1=\frac{7}{10} \ln (20) \\
& \Longleftrightarrow \theta=\frac{7}{10} \ln (20)-1=1.097
\end{aligned}
$$

2. Consequently the 1.097 -safety loading premium for the proportional loss $Z=0.7 X$ is given by

$$
\Pi_{\mathrm{SL}}(1.097)=(1+1.097) \mathrm{E}[Z]=2.097 \times 0.7 \mathrm{E}[X]=2.097 \times 0.7 \times 0.5=0.73395 .
$$

