Solution of the second midterm exam ACTU-464 Fall 2019 (25%) (two pages)

December 9, 2019 (two hours 8–10 AM)

Problem 1. (6 marks)

Consider an insurance policy against a liability loss S when there is a deductible of 1 and a maximum payment of 10. Let X denotes the payment from the insurer's point of view. Set X = IB, The probability of a positive claim is 10% and the probability of X = 10 is 2%. Given 1 < S < 11, S has a uniform(1, 11) distribution.

- 1. (2 marks) Calculate $\mathbb{E}[X]$ using the formula $\mathbb{E}[X] = \mu q$, where $\mu = \mathbb{E}[B|I=1]$
- 2. (2 marks) Calculate Var (X) using the formula Var $(X) = \mu^2 q(1-q) + \sigma^2 q$, where $\sigma^2 = \text{Var}(B|I=1)$
- 3. (2 marks) Use normal approximation to calculate the percentile premium $P_{0.95}$ of the risk X. that is $P(X \le P_{0.95}) = 0.95$. (The solution to the equations $P(\mathcal{N}(0, 1) > t) = 0.05$ is t = 1.644854)

Solution:

1. We have X = IB where I = 1 when there is a payment and 0 otherwise and B represents the amount paid, if any. We know that

$$\mathbb{P}(B=10|I=1) = \frac{\mathbb{P}(B=10; I=1)}{\mathbb{P}(I=1)}$$

Therefore $\mathbb{P}(I=1) = 0.1$ (probability of a positive claim) and

$$\mathbb{P}(B=10; I=1) = \mathbb{P}(X=10) = \mathbb{P}(\text{ probability of a large loss }) = 0.02,$$

hence $\mathbb{P}(B = 10|I = 1) = \frac{0.02}{0.1} = 0.2$. Moreover $f_{B|I}(x|1) = c$ for 0 < x < 10. So c is determined by using the property

$$\mathbb{P}(B=10|I=1) + \int f_{B|I}(x|1)dx = 1 \iff 0.8 = \int_0^{10} cdx \text{ that is } 10c = 0.8$$

this yields c = 0.08. The conditional distribution function of B, given I = 1, is neither discrete, nor continuous. We have $f_{B|I}(x|1) = 0.08$ on (0, 10) and $\mathbb{P}(B = 10|I = 1) = 0.2$. Hence $\mu = \mathbb{E}[B|I = 1] = 10 \times 0.2 + \int_0^{10} 0.08x dx = 6$. So $\mathbb{E}[X] = 6 \times 0.1 = 0.6$.

2. Moreover

$$\mathbb{E}[B^2|I=1] = 10^2 \times 0.2 + \int_0^{10} 0.08x^2 dx = 46.667$$

and then $\sigma^2 = 46.667 - (0.6)^2 = 46.307$. Thus Var $(X) = 5^2 \times 0.1(1 - 0.1) + 46.307 \times 0.1 = 6.8807$.

3. $P_{0.95}$ is given by

$$P\left(X \le P_{0.95}\right) = P\left(\frac{X - \mathbb{E}[X]}{\sqrt{\operatorname{Var}\left(X\right)}} \le \frac{P_{0.95} - \mathbb{E}[X]}{\sqrt{\operatorname{Var}\left(X\right)}}\right) = P\left(\frac{X - 0.6}{2.6231} \le \frac{P_{0.95} - 0.6}{2.6231}\right) = 0.95$$

Thus $\frac{P_{0.95} - 0.6}{2.6231} = 1.644854$, $P_{0.95} = 0.6 + 2.6231 \times 1.644854 = 4.9146$.

Problem 2. (6 marks)

A portfolio consists of two types of contracts. For type k, k = 1, 2, the claim probability is q_k and the number of policies is n_k . If there is a claim, then its size is x with probability $f_k(x)$:

	n_k	q_k	$f_k(1)$	$f_k(2)$	$f_k(3)$
Type I	1000	0.01	0.5	0	0.5
Type II	2000	0.02	0.5	0.5	0

Assume that the contracts are independent. Let S_k denote the total claim amount of the contracts of type k and let $S = S_1 + S_2$.

- 1. (2 marks) Calculate the expected value and the variance of a contract of type k, k = 1, 2.
- 2. (2 marks) Then, calculate the expected value and the variance of S.
- 3. (2 marks) Use the normal approximation to determine the minimum capital that covers all claims with probability 95%.

Solution:

1. First we have $\mu_1 = \frac{1}{2} + \frac{3}{2} = 2$ and $\mu_2 = \frac{1}{2} + \frac{2}{2} = \frac{3}{2} = 1.5$, then $2000 \times 1.5 \times 0.02 = 60.0$

$$\mathbb{E}[S_1] = n_1 \mu_1 q_1 = 1000 \times 2 \times 0.01 = \mathbf{20}.$$

$$\mathbb{E}[S_2] = n_2 \mu_2 q_2 = 2000 \times 1.5 \times 0.02 = \mathbf{60}.$$

Second $\sigma_1^2 = \frac{1}{2} + \frac{3^2}{2} - 2^2 = 1$, then

$$\operatorname{Var}(S_1) = n_1 \left(\mu_1^2 q_1 (1 - q_1) + \sigma_1^2 q_1 \right) = 1000 \left(2^2 \times 0.01 (1 - 0.01) + 1^2 \times 0.01 \right) = 49.6.$$

and $\sigma_2^2 = \frac{1}{2} + \frac{2^2}{2} - \left(\frac{3}{2}\right)^2 = \frac{1}{4} = 0.25$, then

Var
$$(S_2) = n_2 \left(\mu_2^2 q_2 (1 - q_2) + \sigma_2^2 q_2 \right) = 2000 \left(1.5^2 \times 0.02 (1 - 0.02) + 0.25^2 \times 0.02 \right) = 90.7.$$

2. We know that $\mathbb{E}[S] = \mathbb{E}[S_1] + \mathbb{E}[S_2] = 20 + 60 = 80$ and

$$\operatorname{Var}(S) = \operatorname{Var}(S_1) + \operatorname{Var}(S_2) = 49.6 + 90.7 = 140.3.$$

3. Denote by C_{\min} the minimum capital such that $P(S \le C_{\min}) = 0.95$, then by normal approximation we get

$$C_{\min} = t_{0.95}\sqrt{\operatorname{Var}\left(S\right)} + \mathbb{E}\left[S\right] = 1.644854\sqrt{140.3} + 80 = 99.483.$$

Problem 3. (6 marks)

- 1. Assume that $X \sim \text{Uniform}(0,3)$ and $Y \sim \text{Uniform}(-1,1)$. Calculate $F_{X+Y}(z)$,
- 2. Find the premium Π such that $P(X + Y > \Pi) = 0.10$.

Solution:

1. Set S = X + Y, observe first that $f_S(s) = 0$ for $s \le -1$ or $s \ge 4$. Now for $s \le -1 < s < 4$, we can write

$$f_S(s) = \int_{-\infty}^{\infty} f_X(s-y) f_Y(y) dy = \int_{-\infty}^{\infty} f_Y(s-x) f_X(x) dx$$

=
$$\int_{-1}^{1} f_X(s-y) f_Y(y) dy = \frac{1}{2} \int_{-1}^{1} f_X(s-y) dy = \frac{1}{2} \int_{-1}^{1} f_X(s-y) dy.$$

Moreover,

$$f_X(s-y) = \begin{cases} 0 & \text{if } s-y \le 0 & \iff s \le y \\ \frac{1}{3} & \text{if } 0 < s-y < 3 & \iff s-3 < y < s \\ 0 & \text{if } s-y \ge 3 & \iff s-3 \ge y. \end{cases}$$

then $f_S(s) = \frac{1}{6} \int_{(-1)\vee(s-3)}^{1\wedge s} dy = \frac{1}{6} (1 \wedge s - (-1) \vee (s-3))$ and

$$f_S(s) = \begin{cases} \frac{s+1}{6} & \text{if } -1 < s < 1\\ \frac{1+1}{6} = \frac{1}{3} & \text{if } 1 \le s < 2\\ \frac{1-(s-3)}{6} = \frac{4-s}{6} & \text{if } 2 \le s < 4 \end{cases}$$

or

$$f_S(s) = \int_{-\infty}^{\infty} f_Y(s-x) f_X(x) dx = \int_0^3 f_Y(s-x) dx = \frac{1}{6} \left(3 \wedge (1+s) - 0 \lor (s-1) \right)$$

consequently

$$f_S(s) = \begin{cases} \frac{s+1}{6} & \text{if } -1 < s < 1\\ \frac{s+1-(s-1)}{6} = \frac{1}{3} & \text{if } 1 \le s < 2\\ \frac{3-(s-1)}{6} = \frac{4-s}{6} & \text{if } 2 \le s < 4 \end{cases}$$

Finally

$$F_{S}(s) = \int_{-\infty}^{s} f_{S}(u) du = \begin{cases} 0 & \text{if } s \leq -1 \\ \frac{(s+1)^{2}}{12} & \text{if } -1 < s < 1 \\ \frac{1}{3} + \frac{s-1}{3} = \frac{s}{3} & \text{if } 1 \leq s < 2 \\ 1 - \frac{(4-s)^{2}}{12} & \text{if } 2 \leq s < 4 \\ 1 & \text{if } s \geq 4 \end{cases}$$

2. $P(S > \Pi) = 1 - F_S(\Pi) = 0.10$, that is $F_S(\Pi) = 0.9$, since $F_S(1) = \frac{1}{3} = 0.333$ and $F_S(2) = 0.666667$, so the solution to the equation $F_S(s) = 0.9$ should be in the interval (2; 4), thus $1 - \frac{(4 - \Pi)^2}{12} = 0.9$, and then $\Pi = 2.9046$.

Problem 4. (6 marks)

1. (3 marks) For an aggregate loss the frequency distribution is Poisson with $\lambda = 3$ and individual claim amount distribution

x	1	2	3	4
$f_X(x)$	0.4	0.3	0.2	0.1

Determine the probability that aggregate losses do not exceed 3.

- 2. (3 marks) For an insurance policy you are given:
 - (i) The number of losses per year has a Poisson distribution with $\lambda = 1$.
 - (ii) Loss amounts are uniformly distributed on (0, 1).
 - (iii) Loss amounts and the number of losses are mutually independent.
 - (iv) There is an ordinary deductible of $\frac{1}{4}$ per loss.

Calculate the variance of aggregate payments.

Solution:

1. We have to find P(S = k), k = 0, 1, 2, 3

$$\begin{split} P\left(S=0\right) &= P\left(N=0\right) = e^{-3} = 0.049787\\ P\left(S=1\right) &= P(N=1, X_1=1) = P(N=1)P(X_1=1)\\ &= (3e^{-3})(0.4) = (1.2)e^{-3} = 0.059744\\ P\left(S=2\right) &= P(N=1, X_1=2) + P(N=2, X_1=1, X_2=1)\\ &= P(N=1)P(X_1=2) + P(N=2)P(X_1=1)P(X_2=1)\\ &= (3e^{-3})(0.3) + \left(e^{-3}\frac{3^2}{2}\right)(0.4)^2 = (1.62)e^{-3} = 0.080655\\ P\left(S=3\right) &= P\left(N=1, X_1=3\right) + P\left(N=2, X_1=1, X_2=2\right)\\ &+ P\left(N=3, X_1=1, X_2=1, X_3=1\right) + P\left(N=2, X_1=2, X_2=1\right)\\ &+ P\left(N=3, X_1=1, X_2=1, X_3=1\right)\\ &= (3e^{-3})(0.2) + 2(e^{-3}\frac{3^2}{2})(0.4)(0.3) + (e^{-3}\frac{3^3}{3!})(0.4)^3\\ &= (1.968)e^{-3} = 0.097981. \end{split}$$

Therefore

$$P(S \le 3) = P(S = 0) + P(S = 1) + P(S = 2) + P(S = 3)$$

= (1 + 1.2 + 1.62 + 1.968) $e^{-3} = (5.788)e^{-3} = 0.28817.$

2. Let S be the aggregate claims. Then S is a compound distribution r.v. with a Poisson primary distribution for N, the number of claims, and secondary distribution is uniformly distributed on $(0, 1) Y = \max(X - 0.25; 0)$, the amount paid per loss, where X is the loss amount. We want

$$\operatorname{Var}(S) = \mathbb{E}[N]\operatorname{Var}(Y) + \operatorname{Var}(N)\left(\mathbb{E}[Y]\right)^2 = \lambda\left(\operatorname{Var}(Y) + \left(\mathbb{E}[Y]\right)^2\right) = \lambda\mathbb{E}[Y^2] = \mathbb{E}[Y^2]$$

Thus

$$\operatorname{Var}(S) = \mathbb{E}\left[Y^2\right] = \mathbb{E}\left[\max(X - 0.25; 0)^2\right] = \int_{0.25}^1 (x - 0.25)^2 dx = \frac{9}{64} = \mathbf{0.14063}.$$

Problem 5. (6 marks)

- 1. (3 marks) Let N_1 , N_2 and N_3 are i.i.d. with common distribution Poisson(1). For the retention level or deductible or stop-loss d = 2.5, determine $\mathbb{E}[(N_1 + 2N_2 + 3N_3 d)^+]$.
- 2. (3 marks) Let S be an aggregate loss having a Poisson frequency distribution with parameter $\lambda = 5$. The individual claim amount has the following distribution:

x	100	500	1000
$f_X(x)$	0.8	0.16	0.04

Calculate the probability that aggregate claims will be exactly 600.

Solution:

1. Set $S = N_1 + 2N_2 + 3N_3$, we that

$$\mathbb{E}\left[\left(S-2.5\right)^{+}\right] = \mathbb{E}\left[S\right] - \mathbb{E}\left[S \land 2.5\right] = 6 - \sum_{k=0}^{2} k f_{S}(k) - 2.5P\left(S > 2.5\right)$$
$$= 6 - \left(f_{S}(1) + 2f_{S}(2) + 2.5\left(1 - \sum_{k=0}^{2} f_{S}(k)\right)\right)$$
$$= 6 - \left(f_{S}(1) + 2f_{S}(2) + 2.5\left(1 - \left(f_{S}(0) + f_{S}(1) + f_{S}(2)\right)\right)\right)$$
$$= 3.5 + 2.5f_{S}(0) + 1.5f_{S}(1) + 0.5f_{S}(2)$$

Now, let us calculate $f_S(0)$, $f_S(1)$ and $f_S(2)$. By definition

$$f_{S}(0) = P(N_{1} = 0, N_{2} = 0, N_{3} = 0) = e^{-3},$$

$$f_{S}(1) = P(N_{1} = 1, N_{2} = 0, N_{3} = 0) = e^{-1}e^{-2} = e^{-3},$$

$$f_{S}(2) = P(N_{1} = 2, N_{2} = 0, N_{3} = 0) + P(N_{1} = 0, N_{2} = 1, N_{3} = 0)$$

$$= \frac{e^{-1}}{2}e^{-2} + e^{-1}e^{-2} = \frac{3}{2}e^{-3}.$$

Therefore

$$\mathbb{E}\left[\left(S-2.5\right)^{+}\right] = 3.5 + 2.5e^{-3} + 1.5e^{-3} + 0.5\frac{3}{2}e^{-3} = 3.7365.$$

2. Case 1. N = 2 in which we have $X_1 = 100$, $X_2 = 500$ or $X_2 = 100$, $X_1 = 500$. Case 2. N = 6 in which we have $X_i = 100$ for i = 1, ..., 6. Thus

$$P(S = 600) = P(N = 2, X_1 = 100, X_2 = 500) + P(N = 2, X_1 = 500, X_2 = 100) + P(N = 6, X_i = 100, \text{ for } i = 1, ..., 6).$$

hence

$$P(S = 600) = P(N = 2) P(X_{1} = 100) P(X_{2} = 500) +P(N = 2) P(X_{1} = 500) P(X_{2} = 100) +P(N = 6) \prod_{i=1}^{6} P(X_{i} = 100) = 2P(N = 2) P(X_{1} = 100) P(X_{2} = 500) + P(N = 6) (P(X_{1} = 100))^{6} = 2e^{-5} \frac{5^{2}}{2} 0.8 \times 0.16 + e^{-5} \frac{5^{6}}{6!} (0.8)^{6} = 0.059893.$$