King Saud University
Academic Year (G) 2019-2020
College of Sciences
Mathematics Department
Academic Year (H) 1441
Bachelor AFM: M. Eddahbi

Solution of the second midterm exam ACTU-464 Fall 2019 (25\%) (two pages)

December 9, 2019 (two hours 8-10 AM)

Problem 1. (6 marks)

Consider an insurance policy against a liability loss S when there is a deductible of 1 and a maximum payment of 10 . Let X denotes the payment from the insurer's point of view. Set $X=\mathrm{IB}$, The probability of a positive claim is 10% and the probability of $X=10$ is 2%. Given $1<S<11, S$ has a uniform $(1,11)$ distribution.

1. (2 marks) Calculate $\mathbb{E}[X]$ using the formula $\mathbb{E}[X]=\mu q$, where $\mu=\mathbb{E}[B \mid I=1]$
2. (2 marks) Calculate $\operatorname{Var}(X)$ using the formula $\operatorname{Var}(X)=\mu^{2} q(1-q)+\sigma^{2} q$, where $\sigma^{2}=\operatorname{Var}(B \mid I=1)$
3. (2 marks) Use normal approximation to calculate the percentile premium $P_{0.95}$ of the risk X. that is $P\left(X \leq P_{0.95}\right)=0.95$. (The solution to the equations $P(\mathcal{N}(0,1)>t)=0.05$ is $\left.t=1.644854\right)$

Solution:

1. We have $X=\mathrm{IB}$ where $I=1$ when there is a payment and 0 otherwise and B represents the amount paid, if any. We know that

$$
\mathbb{P}(B=10 \mid I=1)=\frac{\mathbb{P}(B=10 ; I=1)}{\mathbb{P}(I=1)}
$$

Therefore $\mathbb{P}(I=1)=0.1$ (probability of a positive claim) and

$$
\mathbb{P}(B=10 ; I=1)=\mathbb{P}(X=10)=\mathbb{P}(\text { probability of a large loss })=0.02
$$

hence $\mathbb{P}(B=10 \mid I=1)=\frac{0.02}{0.1}=0.2$. Moreover $f_{B \mid I}(x \mid 1)=c$ for $0<x<10$.
So c is determined by using the property

$$
\mathbb{P}(B=10 \mid I=1)+\int f_{B \mid I}(x \mid 1) d x=1 \Longleftrightarrow 0.8=\int_{0}^{10} c d x \text { that is } 10 c=0.8
$$

this yields $c=0.08$. The conditional distribution function of B, given $I=1$, is neither discrete, nor continuous. We have $f_{B \mid I}(x \mid 1)=0.08$ on $(0,10)$ and $\mathbb{P}(B=10 \mid I=1)=0.2$. Hence $\mu=\mathbb{E}[B \mid I=$ $1]=10 \times 0.2+\int_{0}^{10} 0.08 x d x=6 . \mathrm{SoE}[X]=6 \times 0.1=\mathbf{0 . 6}$.
2. Moreover

$$
\mathbb{E}\left[B^{2} \mid I=1\right]=10^{2} \times 0.2+\int_{0}^{10} 0.08 x^{2} d x=46.667
$$

and then $\sigma^{2}=46.667-(0.6)^{2}=46.307$. Thus $\operatorname{Var}(X)=5^{2} \times 0.1(1-0.1)+46.307 \times 0.1=\mathbf{6 . 8 8 0 7}$.
3. $P_{0.95}$ is given by

$$
P\left(X \leq P_{0.95}\right)=P\left(\frac{X-\mathbb{E}[X]}{\sqrt{\operatorname{Var}(X)}} \leq \frac{P_{0.95}-\mathbb{E}[X]}{\sqrt{\operatorname{Var}(X)}}\right)=P\left(\frac{X-0.6}{2.6231} \leq \frac{P_{0.95}-0.6}{2.6231}\right)=0.95
$$

Thus $\frac{P_{0.95}-0.6}{2.6231}=1.644854, P_{0.95}=0.6+2.6231 \times 1.644854=4.9146$.

Problem 2. (6 marks)

A portfolio consists of two types of contracts. For type $k, k=1,2$, the claim probability is q_{k} and the number of policies is n_{k}. If there is a claim, then its size is x with probability $f_{k}(x)$:

	n_{k}	q_{k}	$f_{k}(1)$	$f_{k}(2)$	$f_{k}(3)$
Type I	1000	0.01	0.5	0	0.5
Type II	2000	0.02	0.5	0.5	0

Assume that the contracts are independent. Let S_{k} denote the total claim amount of the contracts of type k and let $S=S_{1}+S_{2}$.

1. (2 marks) Calculate the expected value and the variance of a contract of type $k, k=1,2$.
2. (2 marks) Then, calculate the expected value and the variance of S.
3. (2 marks) Use the normal approximation to determine the minimum capital that covers all claims with probability 95%.

Solution:

1. First we have $\mu_{1}=\frac{1}{2}+\frac{3}{2}=2$ and $\mu_{2}=\frac{1}{2}+\frac{2}{2}=\frac{3}{2}=1.5$, then $2000 \times 1.5 \times 0.02=60.0$

$$
\begin{aligned}
& \mathbb{E}\left[S_{1}\right]=n_{1} \mu_{1} q_{1}=1000 \times 2 \times 0.01=\mathbf{2 0} \\
& \mathbb{E}\left[S_{2}\right]=n_{2} \mu_{2} q_{2}=2000 \times 1.5 \times 0.02=\mathbf{6 0}
\end{aligned}
$$

Second $\sigma_{1}^{2}=\frac{1}{2}+\frac{3^{2}}{2}-2^{2}=1$, then

$$
\operatorname{Var}\left(S_{1}\right)=n_{1}\left(\mu_{1}^{2} q_{1}\left(1-q_{1}\right)+\sigma_{1}^{2} q_{1}\right)=1000\left(2^{2} \times 0.01(1-0.01)+1^{2} \times 0.01\right)=49.6
$$

and $\sigma_{2}^{2}=\frac{1}{2}+\frac{2^{2}}{2}-\left(\frac{3}{2}\right)^{2}=\frac{1}{4}=0.25$, then

$$
\operatorname{Var}\left(S_{2}\right)=n_{2}\left(\mu_{2}^{2} q_{2}\left(1-q_{2}\right)+\sigma_{2}^{2} q_{2}\right)=2000\left(1.5^{2} \times 0.02(1-0.02)+0.25^{2} \times 0.02\right)=\mathbf{9 0 . 7}
$$

2. We know that $\mathbb{E}[S]=\mathbb{E}\left[S_{1}\right]+\mathbb{E}\left[S_{2}\right]=20+60=80$ and

$$
\operatorname{Var}(S)=\operatorname{Var}\left(S_{1}\right)+\operatorname{Var}\left(S_{2}\right)=49.6+90.7=\mathbf{1 4 0 . 3}
$$

3. Denote by $C_{\min }$ the minimum capital such that $P\left(S \leq C_{\min }\right)=0.95$, then by normal approximation we get

$$
C_{\min }=t_{0.95} \sqrt{\operatorname{Var}(S)}+\mathbb{E}[S]=1.644854 \sqrt{140.3}+80=\mathbf{9 9 . 4 8 3}
$$

Problem 3. (6 marks)

1. Assume that $X \sim \operatorname{Uniform}(0,3)$ and $Y \sim \operatorname{Uniform}(-1,1)$. Calculate $F_{X+Y}(z)$,
2. Find the premium Π such that $P(X+Y>\Pi)=0.10$.

Solution:

1. Set $S=X+Y$, observe first that $f_{S}(s)=0$ for $s \leq-1$ or $s \geq 4$. Now for $s \leq-1<s<4$, we can write

$$
\begin{aligned}
f_{S}(s) & =\int_{-\infty}^{\infty} f_{X}(s-y) f_{Y}(y) d y=\int_{-\infty}^{\infty} f_{Y}(s-x) f_{X}(x) d x \\
& =\int_{-1}^{1} f_{X}(s-y) f_{Y}(y) d y=\frac{1}{2} \int_{-1}^{1} f_{X}(s-y) d y=\frac{1}{2} \int_{-1}^{1} f_{X}(s-y) d y
\end{aligned}
$$

Moreover,

$$
f_{X}(s-y)=\left\{\begin{aligned}
0 \text { if } s-y \leq 0 & \Longleftrightarrow s \leq y \\
\frac{1}{3} \text { if } 0<s-y<3 & \Longleftrightarrow s-3<y<s \\
0 \text { if } s-y \geq 3 & \Longleftrightarrow s-3 \geq y .
\end{aligned}\right.
$$

then $f_{S}(s)=\frac{1}{6} \int_{(-1) \vee(s-3)}^{1 \wedge s} d y=\frac{1}{6}(1 \wedge s-(-1) \vee(s-3))$ and

$$
f_{S}(s)= \begin{cases}\frac{s+1}{6} & \text { if }-1<s<1 \\ \frac{1+1}{6}=\frac{1}{3} & \text { if } 1 \leq s<2 \\ \frac{1-(s-3)}{6}=\frac{4-s}{6} & \text { if } 2 \leq s<4\end{cases}
$$

or

$$
f_{S}(s)=\int_{-\infty}^{\infty} f_{Y}(s-x) f_{X}(x) d x=\int_{0}^{3} f_{Y}(s-x) d x=\frac{1}{6}(3 \wedge(1+s)-0 \vee(s-1))
$$

consequently

$$
f_{S}(s)=\left\{\begin{array}{lll}
\frac{s+1}{6} & \text { if } & -1<s<1 \\
\frac{s+1-(s-1)}{6}=\frac{1}{3} & \text { if } & 1 \leq s<2 \\
\frac{3-(s-1)}{6}=\frac{4-s}{6} & \text { if } & 2 \leq s<4
\end{array}\right.
$$

Finally

$$
F_{S}(s)=\int_{-\infty}^{s} f_{S}(u) d u=\left\{\begin{array}{cll}
0 & \text { if } s \leq-1 \\
\frac{(s+1)^{2}}{12} & \text { if }-1<s<1 \\
\frac{1}{3}+\frac{s-1}{3}=\frac{s}{3} & \text { if } 1 \leq s<2 \\
1-\frac{(4-s)^{2}}{12} & \text { if } 2 \leq s<4 \\
1 & \text { if } s \geq 4
\end{array}\right.
$$

2. $P(S>\Pi)=1-F_{S}(\Pi)=0.10$, that is $F_{S}(\Pi)=0.9$, since $F_{S}(1)=\frac{1}{3}=0.333$ and $F_{S}(2)=0.66667$, so the solution to the equation $F_{S}(s)=0.9$ should be in the interval $(2 ; 4)$, thus $1-\frac{(4-\Pi)^{2}}{12}=0.9$, and then $\Pi=\mathbf{2 . 9 0 4 6}$.

Problem 4. (6 marks)

1. (3 marks) For an aggregate loss the frequency distribution is Poisson with $\lambda=3$ and individual claim amount distribution

x	1	2	3	4
$f_{X}(x)$	0.4	0.3	0.2	0.1

Determine the probability that aggregate losses do not exceed 3 .
2. (3 marks) For an insurance policy you are given:
(i) The number of losses per year has a Poisson distribution with $\lambda=1$.
(ii) Loss amounts are uniformly distributed on $(0,1)$.
(iii) Loss amounts and the number of losses are mutually independent.
(iv) There is an ordinary deductible of $\frac{1}{4}$ per loss.

Calculate the variance of aggregate payments.

Solution:

1. We have to find $P(S=k), k=0,1,2,3$

$$
\begin{aligned}
P(S=0)= & P(N=0)=e^{-3}=0.049787 \\
P(S=1)= & P\left(N=1, X_{1}=1\right)=P(N=1) P\left(X_{1}=1\right) \\
= & \left(3 e^{-3}\right)(0.4)=(1.2) e^{-3}=0.059744 \\
P(S=2)= & P\left(N=1, X_{1}=2\right)+P\left(N=2, X_{1}=1, X_{2}=1\right) \\
= & P(N=1) P\left(X_{1}=2\right)+P(N=2) P\left(X_{1}=1\right) P\left(X_{2}=1\right) \\
= & \left(3 e^{-3}\right)(0.3)+\left(e^{-3} \frac{3^{2}}{2}\right)(0.4)^{2}=(1.62) e^{-3}=0.080655 \\
P(S=3)= & P\left(N=1, X_{1}=3\right)+P\left(N=2, X_{1}=1, X_{2}=2\right) \\
& +P\left(N=3, X_{1}=1, X_{2}=1, X_{3}=1\right)+P\left(N=2, X_{1}=2, X_{2}=1\right) \\
& +P\left(N=3, X_{1}=1, X_{2}=1, X_{3}=1\right) \\
= & \left(3 e^{-3}\right)(0.2)+2\left(e^{-3} \frac{3^{2}}{2}\right)(0.4)(0.3)+\left(e^{-3} \frac{3^{3}}{3!}\right)(0.4)^{3} \\
= & (1.968) e^{-3}=0.097981 .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
P(S \leq 3) & =P(S=0)+P(S=1)+P(S=2)+P(S=3) \\
& =(1+1.2+1.62+1.968) e^{-3}=(5.788) e^{-3}=\mathbf{0 . 2 8 8 1 7}
\end{aligned}
$$

2. Let S be the aggregate claims. Then S is a compound distribution r.v. with a Poisson primary distribution for N, the number of claims, and secondary distribution is uniformly distributed on $(0,1) Y=\max (X-0.25 ; 0)$, the amount paid per loss, where X is the loss amount. We want

$$
\operatorname{Var}(S)=\mathbb{E}[N] \operatorname{Var}(Y)+\operatorname{Var}(N)(\mathbb{E}[Y])^{2}=\lambda\left(\operatorname{Var}(Y)+(\mathbb{E}[Y])^{2}\right)=\lambda \mathbb{E}\left[Y^{2}\right]=\mathbb{E}\left[Y^{2}\right]
$$

Thus

$$
\operatorname{Var}(S)=\mathbb{E}\left[Y^{2}\right]=\mathbb{E}\left[\max (X-0.25 ; 0)^{2}\right]=\int_{0.25}^{1}(x-0.25)^{2} d x=\frac{9}{64}=\mathbf{0 . 1 4 0 6 3}
$$

Problem 5. (6 marks)

1. (3 marks) Let N_{1}, N_{2} and N_{3} are i.i.d. with common distribution Poisson(1). For the retention level or deductible or stop-loss $d=2.5$, determine $\mathbb{E}\left[\left(N_{1}+2 N_{2}+3 N_{3}-d\right)^{+}\right]$.
2. (3 marks) Let S be an aggregate loss having a Poisson frequency distribution with parameter $\lambda=5$. The individual claim amount has the following distribution:

x	100	500	1000
$f_{X}(x)$	0.8	0.16	0.04

Calculate the probability that aggregate claims will be exactly 600 .

Solution:

1. Set $S=N_{1}+2 N_{2}+3 N_{3}$, we that

$$
\begin{aligned}
\mathbb{E}\left[(S-2.5)^{+}\right] & =\mathbb{E}[S]-\mathbb{E}[S \wedge 2.5]=6-\sum_{k=0}^{2} k f_{S}(k)-2.5 P(S>2.5) \\
& =6-\left(f_{S}(1)+2 f_{S}(2)+2.5\left(1-\sum_{k=0}^{2} f_{S}(k)\right)\right) \\
& =6-\left(f_{S}(1)+2 f_{S}(2)+2.5\left(1-\left(f_{S}(0)+f_{S}(1)+f_{S}(2)\right)\right)\right) \\
& =3.5+2.5 f_{S}(0)+1.5 f_{S}(1)+0.5 f_{S}(2)
\end{aligned}
$$

Now, let us calculate $f_{S}(0), f_{S}(1)$ and $f_{S}(2)$. By definition

$$
\begin{aligned}
f_{S}(0) & =P\left(N_{1}=0, N_{2}=0, N_{3}=0\right)=e^{-3} \\
f_{S}(1) & =P\left(N_{1}=1, N_{2}=0, N_{3}=0\right)=e^{-1} e^{-2}=e^{-3} \\
f_{S}(2) & =P\left(N_{1}=2, N_{2}=0, N_{3}=0\right)+P\left(N_{1}=0, N_{2}=1, N_{3}=0\right) \\
& =\frac{e^{-1}}{2} e^{-2}+e^{-1} e^{-2}=\frac{3}{2} e^{-3} .
\end{aligned}
$$

Therefore

$$
\mathbb{E}\left[(S-2.5)^{+}\right]=3.5+2.5 e^{-3}+1.5 e^{-3}+0.5 \frac{3}{2} e^{-3}=\mathbf{3 . 7 3 6 5}
$$

2. Case 1. $N=2$ in which we have $X_{1}=100, X_{2}=500$ or $X_{2}=100, X_{1}=500$.

Case 2. $N=6$ in which we have $X_{i}=100$ for $i=1, \ldots, 6$. Thus

$$
\begin{aligned}
P(S=600)= & P\left(N=2, X_{1}=100, X_{2}=500\right)+P\left(N=2, X_{1}=500, X_{2}=100\right) \\
& +P\left(N=6, X_{i}=100, \text { for } i=1, \ldots, 6\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
P(S=600)= & P(N=2) P\left(X_{1}=100\right) P\left(X_{2}=500\right) \\
& +P(N=2) P\left(X_{1}=500\right) P\left(X_{2}=100\right) \\
& +P(N=6) \prod_{i=1}^{6} P\left(X_{i}=100\right) \\
= & 2 P(N=2) P\left(X_{1}=100\right) P\left(X_{2}=500\right)+P(N=6)\left(P\left(X_{1}=100\right)\right)^{6} \\
= & 2 e^{-5} \frac{5^{2}}{2} 0.8 \times 0.16+e^{-5} \frac{5^{6}}{6!}(0.8)^{6}=\mathbf{0 . 0 5 9 8 9 3}
\end{aligned}
$$

