King Saud University
College of Sciences
Academic Year (G) 2019-2020
Academic Year (H) 1441
Mathematics Department
Bachelor AFM: M. Eddahbi

Solution of the first midterm exam ACTU-464 SPRING 2020 (25\%) (two pages)

February 24, 2020 (two hours 8-10 AM)

Problem 1. (6 marks)

Consider a loss X having a c.d.f.

$$
F_{X}(x)=\left\{\begin{array}{ccc}
0 & \text { if } & x<1 \\
\frac{x^{2}-2 x+2}{2} & \text { if } & 1 \leq x<2 \\
1 & \text { if } & x \geq 2
\end{array}\right.
$$

1. (2 marks) Calculate the safety loading premium $\Pi_{\mathrm{SL}}(0.05)$ and $P\left(X \leq \Pi_{\mathrm{SL}}(0.05)\right)$
2. (2 marks) Calculate the σ-loading premium $\Pi_{\mathrm{sd}}(0.05)$ and $P\left(X>\Pi_{\mathrm{sd}}(0.05)\right)$
3. (2 marks) Calculate the exponential premium $\Pi_{\operatorname{Exp}}(0.05)$ and $P\left(X \leq \Pi_{\operatorname{Exp}}(0.05)\right)=0.20$.

Solution:

1. We know that $\Pi_{\mathrm{SL}}(0.05)=1.05 E[X]$. We need first to find the distribution of X

$$
f_{X}(x)=\left\{\begin{array}{ccc}
0 & \text { if } & x<1 \\
F_{X}(1)-F_{X}(1-)=\frac{1}{2} & \text { if } & x=1 \\
x-1 & \text { if } & 1<x<2 \\
0=F_{X}(2)-F_{X}(2-) & \text { if } & x \geq 2
\end{array}\right.
$$

Thus

$$
\Pi_{\mathrm{SL}}(0.05)=1.05 E[X]=1.05\left(0.5+\int_{1}^{2} x(x-1) d x\right)=1.05 \times 1.3333=1.4
$$

And

$$
P\left(X \leq \Pi_{\mathrm{SL}}(0.05)\right)=P(X \leq 1.4)=\frac{(1.4)^{2}-2 \times 1.4+2}{2}=\mathbf{0 . 5 8}
$$

2. By definition $\left.\Pi_{\mathrm{sd}}(0.05)=E[X]+0.05 \sqrt{\operatorname{Var}(X)}, E\left[X^{2}\right]=0.5+\int_{1}^{2} x^{2}(x-1) d x\right)=1.9167$ and $\operatorname{Var}(X)=1.9167-(1.3333)^{2}=0.13901$. Hence

$$
\Pi_{\mathrm{sd}}(0.05)=1.3333+0.05 \sqrt{0.13901}=\mathbf{1 . 3 5 1 9}
$$

And

$$
\begin{aligned}
P\left(X>\Pi_{\mathrm{sd}}(0.05)\right) & =1-P(X \leq 1.3519) \\
& =1-\frac{(1.3519)^{2}-2 \times 1.3519+2}{2} \\
& =1-0.56192=\mathbf{0 . 4 3 8 0 8}
\end{aligned}
$$

3. By definition $\Pi_{\operatorname{Exp}}(0.05)=\frac{1}{0.05} \ln \left(M_{X}(0.05)\right)$, and

$$
M_{X}(0.05)=\frac{1}{2} e^{0.05}+\int_{1}^{2} e^{0.05 x}(x-1) d x=1.0691
$$

therefore

$$
\Pi_{\mathrm{Exp}}(0.05)=\frac{1}{0.05} \ln (1.0691)=\mathbf{1 . 3 3 6 3}
$$

And

$$
\begin{aligned}
P(X & \left.>\Pi_{\operatorname{Exp}}(0.05)\right)=1-P(X \leq 1.3363) \\
& =1-\frac{(1.3363)^{2}-2 \times 1.3363+2}{2} \\
& =1-0.55655=\mathbf{0 . 4 4 3 4 5}
\end{aligned}
$$

Problem 2. (6 marks) Consider a stop-loss with retention level $M=1.2$ (partial insurance cover with payoff Z) of loss considered in the Problem 1.

1. (2 marks) Calculate the σ^{2}-loading premium $\Pi_{\text {Var }}$ such that $P\left(Z>\Pi_{\text {Var }}\right)=0.2$
2. (2 marks) Calculate the quantile premium $\Pi_{Q u a}$ such that $P\left(Z \leq \Pi_{Q u a}\right)=0.75$.
3. (2 marks) Calculate the safety loading parameter θ assuming that Z is normally distributed such that $P\left(Z \leq \Pi_{\mathrm{SL}}(\theta)\right)=0.95$.

Solution:

1. The equation $P\left(Z>\Pi_{\operatorname{Var}}(c)\right)=0.2=P\left(X>\Pi_{\operatorname{Var}}(c)+1.2\right)=0.2 \Longleftrightarrow P\left(X \leqslant \Pi_{\mathrm{Var}}(c)+1.2\right)=$ 0.8 , that is

$$
F_{X}\left(\Pi_{\mathrm{Var}}(c)+1.2\right)=0.8
$$

We know that $P(Z \leq 1)=0.5$ then the solution to the equation $F_{X}(x)=\frac{x^{2}-2 x+2}{2}=0.8$, in he interval $] 1,2\left[\right.$ is: 1.7746 , thus $\Pi_{\mathrm{Var}}(c)=1.7746-1.2=\mathbf{0 . 5 7 4 6}$.
2. Similarly $F_{X}\left(\Pi_{\mathrm{Qua}}+1.2\right)=0.75$ gives $\Pi_{\mathrm{Qua}}=1.7071-1.2=\mathbf{0 . 5 0 7 1}$.
3. Set $T=\frac{Z-E[Z]}{\sigma_{Z}}$ then

$$
P\left(Z \leq \Pi_{\mathrm{SL}}(\theta)\right)=0.95 \Longleftrightarrow P\left(T>\theta \frac{E[Z]}{\sigma_{Z}}\right)=0.05
$$

hence $\theta \frac{E[Z]}{\sigma_{Z}}=1.644854$ thus $\theta E[Z]=1.644854 \sigma_{Z}$ consequently $\Pi_{\mathrm{SL}}(\theta)=E[Z]+1.644854 \sigma_{Z}$. Now, $E[Z]=\int_{1.2}^{2}(x-1.2)(x-1) d x=0.23467$ and $E\left[Z^{2}\right]=\int_{1.2}^{2}(x-1.2)^{2}(x-1) d x=0.13653$ so $\sigma_{Z}=\sqrt{0.13653-(0.23467)^{2}}=0.28541$, finally

$$
\Pi_{\mathrm{SL}}(\theta)=0.23467+1.644854 \times 0.28541=\mathbf{0 . 7 0 4 1 3}
$$

Problem 3. (6 marks)

A decision maker's utility function is given by $u(x)=\sqrt{x}$. The decision maker has wealth of $W=1000$ and faces a random loss X with a uniform distribution on $(0,1000)$.

1. (1 mark) Calculate P^{+}for complete insurance against the random loss X ?
2. (1 mark) Calculate P^{-}for complete insurance against the random loss X ?
3. (2 marks) Calculate P^{+}for stop-loss insurance for a retention level $M=500$?
4. (2 marks) Calculate P^{-}for stop-loss insurance for a retention level $M=500$?

Solution:

1. We have

$$
\begin{aligned}
\sqrt{1000-P^{+}} & =\int_{0}^{1000} \sqrt{1000-x} \frac{d x}{1000}=\left[-\frac{2}{3000}(1000-x)^{\frac{3}{2}}\right]_{0}^{1000} \\
& =\frac{2}{3000}(1000)^{\frac{3}{2}}=\frac{2}{3} \sqrt{1000}=\mathbf{2 1 . 0 8 2}
\end{aligned}
$$

Thus $1000-P^{+}=\frac{4}{9} 1000$ finally $P^{+}=1000-\frac{4}{9} 1000=\frac{5}{9} 1000 .=555.56>E[X]=500$.
2. For the premium P^{-}to be paid by the insurer we have to solve

$$
\sqrt{1000}=\int_{0}^{1000} \sqrt{1000+P^{-}-x} \frac{d x}{1000}
$$

which leads to $\frac{2}{3000}\left(\left(1000+P^{-}\right)^{\frac{3}{2}}-\left(P^{-}\right)^{\frac{3}{2}}\right)=\sqrt{1000}$, thus $P^{-}=521.30$. Clearly

$$
E[X]=500<P^{-}=521.30<P^{+}=555.56
$$

3. For stop-loss we have similar equation we just replace X with $Z=(X-500)^{+}$, therefore we get

$$
\begin{aligned}
\sqrt{1000-P+} & =\int_{0}^{1000} \sqrt{1000-(x-500)^{+}} \frac{d x}{1000} \\
& =\int_{0}^{500} \sqrt{1000} \frac{d x}{1000}+\int_{500}^{1000} \sqrt{1500-x} \frac{d x}{1000} \\
& =5 \sqrt{2} \sqrt{5}-\frac{10}{3} \sqrt{5}+\frac{20}{3} \sqrt{10}=29.440
\end{aligned}
$$

$\sqrt{1000-x}=29.440$, the solution is:

$$
P^{+}=133.29>E\left[(X-500)^{+}\right]=\int_{500}^{1000}(x-500) \frac{d x}{1000}=125 .
$$

4. For P^{-}we have

$$
\begin{aligned}
\sqrt{1000} & =\int_{0}^{1000} \sqrt{1000+P^{-}-(x-500)^{+}} \frac{d x}{1000} \\
& =\int_{0}^{500} \sqrt{1000+P^{-}} \frac{d x}{1000}+\int_{500}^{1000} \sqrt{1500+P^{-}-x} \frac{d x}{1000} \\
& =\frac{1}{2} \sqrt{1000+P^{-}}+\left[-\frac{2}{3000}\left(1500+P^{-}-x\right)^{\frac{3}{2}}\right]_{500}^{1000} \\
& =\frac{1}{2} \sqrt{1000+P^{-}}+\frac{2}{3000}\left(1000+P^{-}\right)^{\frac{3}{2}}-\frac{2}{3000}\left(500+P^{-}\right)^{\frac{3}{2}}
\end{aligned}
$$

Thus the solution to the

$$
\frac{1}{2} \sqrt{1000+x}+\frac{2}{3000}(1000+x)^{\frac{3}{2}}-\frac{2}{3000}(500+x)^{\frac{3}{2}}=\sqrt{1000}
$$

is $P^{-}=132.09$ clearly $E\left[(X-500)^{+}\right]=125<P^{-}=132.09<P^{+}=133.29$.

Problem 4. (6 marks)

1. For a given loss X with mean and standard deviation equal to 5 . When a utility function u is replaced by its quadratic form, the approximated premiums P_{a}^{+}and P_{a}^{-}can be expressed as follows

$$
P_{a}^{+}=E[X]+\frac{r(W-E[X])}{2} \operatorname{Var}(X) \text { and } P_{a}^{-}=E[X]+\frac{r(W-E[X])}{2}\left(\operatorname{Var}(X)+\left(P_{a}^{-}\right)^{2}\right)
$$

where W is a given wealth and $r(x)=-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}$ is the risk aversion coefficient.
(2 marks) Calculate ${ }^{\cdot} P_{a}^{+}$for $u(x)=-5 e^{-0.03 x}$ and $W=100,000$.
2. (2 marks) Calculate P_{a}^{-}for $u(x)=-5 e^{-0.003 x}$ and $W=1000$.
3. (2 marks) Explain if there will be a deal between the insurer and the insured.

Solution:

1. We have $r(x)=\frac{-u^{\prime \prime}(x)}{u^{\prime}(x)}=0.03$ for any x then $r(1000000-5)=0.03$. Hence the premium

$$
P_{a}^{+}=5+\frac{0.03}{2}(5)^{2}=5.375
$$

2. For P_{a}^{-}, one should solve the second order equation $x=5+\frac{0.03}{2}\left((5)^{2}+x^{2}\right)$, but there are two solutions 5.8965 and 60.77 , hence $P_{a}^{-}=5.8965$.
3. There will not be a deal since $P_{a}^{-}>P_{a}^{+}$.

Problem 5. (6 marks)

Given exponentially distributéd loss X with with parameter 0.2 .

1. (2 marks) Calculate the exact values of P^{+}for $u(x)=-5 e^{-0.03 x}$ and $W=5000$
2. (2 marks) Calculate the exact values of P^{-}for $u(x)=-5 e^{-0.03 x}$ and $W=7000$
3. (2 marks) Compare the premiums obtained in the Problems 4 and 5 and conclude.

Solution:

1. We have $\alpha=0.03, \lambda=0.2$, and $M_{X}(\alpha)=\frac{\lambda}{\lambda-\alpha} \operatorname{since}(\alpha<\lambda)$ thus

$$
P^{+}=\frac{1}{\alpha} \ln \left(\frac{\lambda}{\lambda-\alpha}\right)=\frac{1}{0.03} \ln \left(\frac{0.2}{0.2-0.03}\right)=\mathbf{5 . 4 1 7 3 .}
$$

2. We know that for the exponential utility $P^{-}=P^{+}=\frac{1}{\alpha} \ln \left(\frac{\lambda}{\lambda-\alpha}\right)=\mathbf{5 . 4 1 7 3}$.
3. When comparing premiums we observe that $P_{a}^{-}=5.8965>P^{-}=P^{+}=5.4173>P_{a}^{+}>$ 5.375. Moreover

$$
P^{+}-P_{a}^{+}=5.4173-5.375=0.0423 \text { but } P_{a}^{-}-P^{-}=5.8965-5.4173=0.4792
$$

we can see that P^{+}is close to P_{a}^{+}but P_{a}^{-}and P^{-}are not close to each other. Finally with the values of P_{a}^{-}and P_{a}^{+}there will be no deal between the two parts.

