King Saud University
College of Sciences
Mathematics Department

Academic Year (G) 2019-2020
Academic Year (H) 1441
Bachelor AFM: M. Eddahbi

Solution of the Final exam ACTU-464 Fall 2019 (40\%) (two pages)

December 18, 2019 (three hours 1-4 PM)

Problem 1. (8 marks)

A random variable X has m.g.f. $M_{X}(t)=(1-2 t)^{-10}$ for $t<0.5$.

1. (2 marks) Use σ^{2}-loading principle or the variance principle to calculate $\Pi_{\mathrm{Var}}(0.05)$,
2. (2 marks) Calculate the exponential premium $\Pi_{\operatorname{Exp}}(0.09655)$.
3. (2 marks) Use normal approximation to calculate $\Pi_{0.05}$ and $\Pi_{0.01}$ such that $\mathrm{P}\left(X>\Pi_{\alpha}\right)=\alpha$. What is the interpretation of Π_{α} if X is a loss of an insurance company?
4. (2 marks) Consider a risk whose distribution follows a Pareto distribution with parameters $\alpha=3$ and $\theta=100$. The c.d.f. of a Pareto distribution is

$$
F_{\text {Pareto }}(x)=1-\left(\frac{\theta}{\theta+x}\right)^{\alpha}, \quad \mathrm{E}[X]=\frac{\theta}{\alpha-1} \quad \text { and } \quad \operatorname{Var}(X)=\frac{\alpha \theta^{2}}{(\alpha-1)^{2}(\alpha-2)}
$$

Calculate the parameter b of the σ-loading premium $\Pi_{\text {sd }}(b)$ such that $\mathrm{P}\left(X \geq \Pi_{\text {sd }}(b)\right)=0.08$.

Solution:

1. We have $\mathrm{E}[X]=M_{X}^{\prime}(0)=20$ and $M_{X}^{\prime \prime}(0)=440$, so $\operatorname{Var}(X)=440-(20)^{2}=40$, hence

$$
\Pi_{\mathrm{Var}}(0.05)=20+40 \times 0.05=\mathbf{2 2} .
$$

2. We have $\Pi_{\operatorname{Exp}}(0.09655)=\frac{1}{0.09655} \ln \left((1-2 \times 0.09655)^{-9}\right)=\mathbf{2 0}$.
3. We can write

$$
\mathrm{P}\left(X>\Pi_{\alpha}\right)=\mathrm{P}\left(\frac{X-20}{2 \sqrt{10}}>\frac{t_{\alpha}-20}{2 \sqrt{10}}\right)=\mathrm{P}\left(Z>\frac{\Pi_{\alpha}-20}{2 \sqrt{10}}\right)=\alpha
$$

so $\frac{\Pi_{0.05}-20}{2 \sqrt{10}}=1.644854$, thus

$$
\Pi_{0.05}=20+1.644854 \times 2 \sqrt{10}=\mathbf{3 0 . 4 0 3}
$$

and $\frac{\Pi_{0.01}-20}{2 \sqrt{10}}=2.326348$, then

$$
\Pi_{0.01}=20+2.326348 \times 2 \sqrt{10}=\mathbf{3 4 . 7 1 3}
$$

4. The premium $\Pi_{\mathrm{sd}}(b)$ is given by

$$
\left(\frac{100}{100+\Pi_{\mathrm{sd}}(b)}\right)^{3}=0.08 \text { that is } \Pi_{\mathrm{sd}}(b)=132.08
$$

Remember that

$$
\Pi_{\mathrm{sd}}(b)=\mathrm{E}[X]+b \sqrt{\operatorname{Var}(X)}=\frac{\theta}{\alpha-1}\left(1+b \sqrt{\frac{\alpha}{(\alpha-2)}}\right)=\frac{100}{2}(1+b \sqrt{3})=132.08
$$

hence $b=0.94778$.

Problem 2. (8 marks)

An insurer undertakes a risk X distributed as follows $\mathrm{P}(X=0)=1-\mathrm{P}(X=36)=\frac{1}{3}$ and after collecting the premium, he owns a capital $W=100$.

1. What is the maximum premium P^{+}the insurer is willing to pay to a reinsurer to take over the complete risk, if his utility function is $u(x)=\ln (x)$?
2. Calculate the net premium denoted by μ of the risk X and its variance σ^{2}.
3. Find the approximation P_{a}^{+}of P^{+}where $P_{a}^{+}=\mu-\frac{\sigma^{2}}{2} \frac{u^{\prime \prime}(W-\mu)}{u^{\prime}(W-\mu)}$.
4. Assume that the reinsurer's minimum premium to take over the risk of the question 1 equals 24 and that the reinsurer has the same utility function. Determine his capital W.

Solution:

1. The the maximum amount P^{+}is given by the equation

$$
\begin{aligned}
u\left(W-P^{+}\right) & =\mathrm{E}[u(W-X)] \Longleftrightarrow u\left(100-P^{+}\right)=\frac{u(100)}{3}+\frac{2 u(64)}{3} \\
& \Longleftrightarrow 3 \ln \left(100-P^{+}\right)=\ln (100)+2 \ln (64)=\ln \left((100)\left(64^{2}\right)\right)
\end{aligned}
$$

hence $\left(100-P^{+}\right)^{3}=(100)\left(64^{2}\right)=409600$, then $P^{+}=100-(409600)^{\frac{1}{3}}=\mathbf{2 5 . 7 3 5}$.
2. Observe first that $\mu=\frac{2}{3} 36=24, \sigma^{2}=\frac{2}{3}(36)^{2}=(24)^{2}=576$.
3. We have $\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}=-\frac{1}{x}$, therefore

$$
P_{a}^{+}=24+\frac{576}{2} \frac{1}{100-24}=\mathbf{2 7 . 7 8 9}
$$

4. The minimum premium form the reinsurer's point of view is given by

$$
u(W)=\mathrm{E}\left[u\left(W+P^{-}-X\right)\right]
$$

so for $P^{-}=24$ we get that is

$$
\ln (W)=\frac{u(W+24)}{3}+\frac{2 u(W+24-36)}{3}
$$

therefore

$$
3 \ln (W)=\ln (W+24)+2 \ln (W-12) \Longleftrightarrow W^{3}=(W+24)(W-12)^{2} \Longleftrightarrow W=\mathbf{8}
$$

Problem 3. (8 marks)

A portfolio of independent insurance policies has three classes of policies:

Class	Number in Class	Probability of Claim per Policy	Claim Amount b_{k}
1	1000	0.01	1
2	2000	0.02	1
3	500	0.04	2

1. (2 marks) Calculate the expectation of the aggregate loss S
2. (2 marks) Calculate the variance of the aggregate loss S
3. (2 marks) Use normal approximation to calculate θ such that the probability of that the aggregate loss is less than the $\Pi_{\mathrm{SL}}(\theta)$ is equal to 0.95 .
4. (2 marks) Find $\Pi_{\mathrm{SL}}(\theta)$.

Solution:

1. We have $\mathrm{E}[S]=\sum_{i=1}^{3} n_{k} b_{k} q_{k}=1000 \times 1 \times 0.01+2000 \times 1 \times 0.02+500 \times 2 \times 0.04=\mathbf{9 0}$.
2. We have

$$
\begin{aligned}
\sigma_{S}^{2} & =\operatorname{Var}(S)=\sum_{i=1}^{3} n_{k} b_{k}^{2} q_{k}\left(1-q_{k}\right) \\
& =1000\left(1 \times 1 \times 0.01 \times 0.99+2 \times 1 \times 0.02 \times 0.98+0.5 \times 2^{2} \times 0.04 \times 0.96\right)=\mathbf{1 2 5 . 9}
\end{aligned}
$$

3. Under normal approximation the r.v. $T=\frac{S-\mathrm{E}[S]}{\sigma_{S}}$ follows a standard normal distribution, therefore

$$
\mathrm{P}\left(S \leq \Pi_{\mathrm{SL}}(\theta)\right)=\mathrm{P}\left(\frac{S-\mathrm{E}[S]}{\sigma_{S}} \leq \frac{\Pi_{\mathrm{SL}}(\theta)-90}{\sqrt{\mathbf{1 2 5 . 9}}}=\theta \frac{90}{\sqrt{\mathbf{1 2 5 . 9}}}\right)=0.95,
$$

hence $\theta=\frac{1.644854 \times \sqrt{125.9}}{90}=\mathbf{0 . 2 0 5 0 7}$.
4. The safety loading premium is $\Pi_{\mathrm{SL}}(0.20507)=1.20507 \times 90=\mathbf{1 0 8 . 4 6}$.

Problem 4. (8 marks)

Let the frequency distribution N of an aggregate loss S follows a geometric distribution with parameter (0.25), and the severity distribution modelling the claim size X is exponentially distributed with parameter 2.

1. (2 marks) Calculate $\Pi_{\operatorname{Exp}}(0.05)$ corresponding to the aggregate loss S.
2. (2 marks) Use the one to one correspondence between c.d.f. and m.g.f. to find the c.d.f. of S ?
3. (2 marks) Find the minimum capital $C_{\min }$ such that $\mathrm{P}\left(S \leq C_{\min }\right)=0.95$.
4. (2 marks) Set $S=X_{1}+2 X_{2}+3 X_{3}$ and X_{j} follows a Poisson distribution with parameter $j, j=1$, 2, 3. Calculate the minimum premium or the net premium $P_{\text {min }}$ to cover the loss $(S-3)^{+}$.

Solution:

1. By definition $\Pi_{\operatorname{Exp}}(0.05)=\frac{1}{0.05} \ln \left(M_{S}(0.05)\right)$, where for $t<2$ hence

$$
M_{S}(0.05)=0.25+0.75 \frac{2 \times 0.25}{2 \times 0.25-0.05}=1.0833
$$

thus $\Pi_{\operatorname{Exp}}(0.05)=\frac{1}{0.05} \ln (1.0833)=1.6002$.
2. We know that $M_{S}(t)=p+q \frac{2 p}{2 p-t}$, so

$$
F_{S}(x)=p+q F_{\operatorname{Exp}(2 p)}(x)=p+q\left(1-e^{-2 p x}\right)=1-q e^{-2 p x}=\mathbf{1}-\mathbf{0 . 7 5} \mathrm{e}^{-0.5 x}
$$

3. Therefore $\mathrm{P}\left(S \leq C_{\min }\right)=F_{S}\left(C_{\min }\right)=0.95=1-0.75 e^{-0.5 C_{\min }}$ which gives $C_{\min }=\mathbf{5 . 4 1 6 1}$.
4. By definition $P_{\min }=\mathrm{E}\left[(S-3)^{+}\right]=\mathrm{E}[S]-\mathrm{E}[S \wedge 3]$, so let us calculate $\mathrm{E}[S]$ and $\mathrm{E}[S \wedge 3]$, clearly $\mathrm{E}[S]=1+4+9=14$ and

$$
\begin{aligned}
\mathrm{E}[S \wedge 3] & =\sum_{k=1}^{3} k f_{S}(k)+3(1-\mathrm{P}(S \leq 3))=f_{S}(1)+2 f_{S}(2)+3 f_{S}(3)+3\left(1-\sum_{k=0}^{3} f_{S}(k)\right) \\
& =3-2 f_{S}(1)-f_{S}(2)-3 f_{S}(0)=3\left(1-f_{S}(0)\right)-2 f_{S}(1)-f_{S}(2) \\
& =3\left(1-e^{-6}\right)-2 e^{-6}-e^{-6} 2=2.9826
\end{aligned}
$$

Finally $P_{\text {min }}=14-2.9826=\mathbf{1 1 . 0 1 7}$.

Problem 5. (8 marks)

1. (2 marks) Use Panjer's recursion to calculate the p.m.f. $f_{S}(n)$ for $n=0,1,2,3,4$ of $S=\sum_{k=1}^{N} X_{i}$ where X_{i} are i.i.d. with common distribution $f_{X}(1)=0.7$ and $f_{X}(2)=0.3$ and N follows a Negative Binomial distribution with parameters $r=4.5$ and $p=0.5$.
2. (2 marks) Calculate the probability that the aggregate loss becomes greater than 3.75.
3. (2 marks) Calculate the mean and variance of the aggregate claim.
4. (2 marks) Use normal approximation to calculate quantile premium $\Pi_{Q u a}$ such that

$$
\mathrm{P}\left(S>\Pi_{\mathrm{Qua}}\right)=0.31886
$$

Solution:

1. Recall that the Negative binomial $\mathcal{N B}(r ; p)$ belongs to the class $C(a, b, 0)$ with $a=1-p=0.5$, $b=(r-1)(1-p)=\frac{3.5}{2}=1.75$ and $p_{0}=\frac{1}{(1+\beta)^{r}}=p^{r}=0.5^{4.5}=0.044194$.
From the Panjer's recursion we have $f_{S}(0)=\mathrm{P}(N=0)=p_{0}=\mathbf{0 . 0 4 4 1 9 4}$ and from for any $n \geq 1$, we have

$$
\begin{aligned}
f_{S}(n) & =\mathrm{P}(S=n)=\frac{\sum_{j=1}^{n}\left(a+\frac{b}{n} j\right) f_{X}(j) f_{S}(n-j)}{1-a f_{X}(0)} \\
& =\frac{1}{2} \sum_{j=1}^{n}\left(1+\frac{3.5}{n} j\right) f_{X}(j) f_{S}(n-j)\left(\text { since } f_{X}(0)=0\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
f_{S}(1) & =\frac{1}{2} \sum_{j=1}^{1}\left(1+\frac{3.5}{1} j\right) f_{X}(j) f_{S}(1-j)=\frac{1}{2} \sum_{j=1}^{1}(4.5) f_{X}(1) f_{S}(0) \\
& =\frac{1}{2} 4.5 \times 0.7 \times 0.044194=\mathbf{0 . 0 6 9 6 0 6} \\
f_{S}(2) & =\frac{1}{2} \sum_{j=1}^{2}\left(1+\frac{3.5}{2} j\right) f_{X}(j) f_{S}(2-j)=\frac{1}{2}\left(1+\frac{3.5}{2}\right) f_{X}(1) f_{S}(1)+\frac{1}{2}\left(1+\frac{3.5}{2} 2\right) f_{X}(2) f_{S}(0) \\
& =\frac{1}{2}\left(1+\frac{3.5}{2}\right) 0.7 \times 0.069606+\frac{1}{2}\left(1+\frac{3.5}{2} 2\right) 0.3 \times 0.044194=\mathbf{0 . 0 9 6 8 2 7} \\
f_{S}(3) & =\frac{1}{2} \sum_{j=1}^{3}\left(1+\frac{3.5}{3} j\right) f_{X}(j) f_{S}(3-j) \\
& =\frac{1}{2}\left(1+\frac{3.5}{3}\right) f_{X}(1) f_{S}(2)+\frac{1}{2}\left(1+\frac{3.5}{3} 2\right) f_{X}(2) f_{S}(1) \operatorname{since}\left(f_{X}(3)=0\right) \\
& =\frac{1}{2}\left(1+\frac{3.5}{3}\right) 0.7 \times 0.096827+\frac{1}{2}\left(1+\frac{3.5}{3} 2\right) 0.3 \times 0.069606=\mathbf{0 . 1 0 8 2 3 0} \\
f_{S}(4) & =\frac{1}{2} \sum_{j=1}^{4}\left(1+\frac{3.5}{4} j\right) f_{X}(j) f_{S}(4-j) \\
& =\frac{1}{2}\left(1+\frac{3.5}{4}\right) f_{X}(1) f_{S}(3)+\frac{1}{2}\left(1+\frac{3.5}{3} 2\right) f_{X}(2) f_{S}(2) \operatorname{since}\left(f_{X}(3)=f_{X}(4)=0\right) \\
& =\frac{1}{2}\left(1+\frac{3.5}{4}\right) 0.7 \times 0.108230+\frac{1}{2}\left(1+\frac{3.5}{4} 2\right) 0.3 \times 0.096827=\mathbf{0 . 1 1 0 9 6 7}
\end{aligned}
$$

2. We have $\mathrm{P}(S>3.75)=1-F_{S}(3)=1-(0.044194+0.069606+0.096827+0.108230)=\mathbf{0 . 6 8 1 1 4}$.
3. We know $\mathrm{E}[N]=\mathrm{E}[\mathcal{N B}(4.5 ; 0.5)]=4.5$. (since $q=p$) and $\operatorname{Var}(N)=2 \times 4.5=9$.
and $\mathrm{E}[X]=0.7+2 \times 0.3=1.3, \mathrm{E}\left[X^{2}\right]=0.7+2^{2} \times 0.3=1.9$, and $\operatorname{Var}(X)=1.9-(1.3)^{2}=0.21$.

$$
\mathrm{E}[S]=\mathrm{E}[N] \mathrm{E}[X]=4.5 \times 1.3=\mathbf{5 . 8 5}
$$

and $\operatorname{Var}(S)=\mathrm{E}[N] \operatorname{Var}(X)+(\mathrm{E}[X])^{2} \operatorname{Var}(N)=4.5 \times 0.21+(1.3)^{2} \times 9=\mathbf{1 6 . 1 5 5}$.
4. We have

$$
\mathrm{P}\left(S>\Pi_{\mathrm{Qua}}\right)=0.31886 \Longleftrightarrow \mathrm{P}\left(S \leq \Pi_{\mathrm{Qua}}\right)=0.9 \Longleftrightarrow \mathrm{P}\left(\frac{S-5.85}{4.0193} \leq \frac{\Pi_{\mathrm{Qua}}-5.85}{4.0193}\right)=0.68114
$$ thus

$$
\Pi_{\text {Qua }}=5.85+4.0193 \times 0.470889=7.7426
$$

