King Saud University
College of Sciences
Mathematics Department

Academic Year (G) 2020-2021
Academic Year (H) 1442
Bachelor AFM: M. Eddahbi

Solution Quiz 1 ACTU 464-474 October 1, 2020

Questions (5 marks)

Let X be a random loss with mixed probability distribution given by:

$$
f(x)=\left\{\begin{array}{ccc}
0 & \text { for } & x<0 \\
\frac{1}{4} & \text { for } & x=0 \\
\frac{3}{4} x e^{-x} & \text { for } & x>0
\end{array}\right.
$$

1. (3 marks) Calculate (a) $\Pi_{\mathrm{SL}}\left(\frac{1}{3}\right)$, (b) $\Pi_{\mathrm{sd}}\left(\frac{1}{2}\right)$ and (c) $\Pi_{\operatorname{Exp}}(0.92358)$. (The premium are that of complete insurance X).
2. (2 marks) For an Excess of loss reinsurance of X with retention level $M=1.3$. Calculate $\Pi_{\text {Qua }}$ such that $P\left(Z>\Pi_{\text {Qua }}\right)=0.10$.

Solution

1. (a) We first calculate $E[X]$.

$$
E[X]=0+\frac{3}{4} \int_{0}^{\infty} x^{2} e^{-x} d x=\frac{3}{2}=1.5
$$

$\Pi_{\mathrm{SL}}\left(\frac{1}{3}\right)=\left(1+\frac{1}{3}\right) E[X]=\frac{4}{3} \frac{3}{2}=\mathbf{2}$.
(b) And $E\left[X^{2}\right]=\frac{3}{4} \int_{0}^{\infty} x^{3} e^{-x} d x=\frac{9}{2}=4.5$ thus $\operatorname{Var}(Z)=\frac{9}{2}-\frac{9}{4}=\frac{9}{4}$ and $\operatorname{sd}(X)=\frac{3}{2}$.Thus $\Pi_{\mathrm{sd}}\left(\frac{1}{2}\right)=\frac{3}{2}+\frac{1}{2} \frac{3}{2}=\frac{9}{4}=\mathbf{2 . 2 5}$.
(c) $\Pi_{\operatorname{Exp}}(0.92358)=\frac{1}{0.92358} \ln \left(M_{X}(0.92358)\right)$ but

$$
M_{X}(c)=E\left[e^{c X}\right]=\frac{1}{4}+\frac{3}{4} \int_{0}^{\infty} e^{c x} x e^{-x} d x=\frac{1}{4}+\frac{3}{4} \int_{0}^{\infty} x e^{-(1-c) x} d x=\frac{1}{4}+\frac{3}{4(1-c)^{2}}
$$

hence

$$
\Pi_{\operatorname{Exp}}(0.92358)=\frac{1}{0.92358} \ln \left(\frac{1}{4}+\frac{3}{4(1-0.92358)^{2}}\right)=\mathbf{5 . 2 5 9 2}
$$

2. We know tha $P\left(Z>\Pi_{\text {Qua }}\right)=0.10$ is equivalent to

$$
\begin{equation*}
P\left(Z \leq \Pi_{\mathrm{Qua}}\right)=0.9=P\left(X \leq \Pi_{\mathrm{Qua}}+1.3\right) \tag{1}
\end{equation*}
$$

and the c.d.f. of X is given for $x>0$ by

$$
P(X \leq x)=\frac{1}{4}+\frac{3}{4} \int_{0}^{x} s e^{-s} d s=\frac{1}{4}+\frac{3}{4}\left(1-(x+1) e^{-x}\right),
$$

therefore the solution to (1) is given by the solution to $\frac{1}{4}+\frac{3}{4}\left(1-(x+1) e^{-x}\right)=0.9$, which is 3.524 , finally $\Pi_{\text {Qua }}=3.524-1.3=\mathbf{2 . 2 2 4}$

