King Saud University
College of Sciences
Mathematics Department

Academic Year (G) 2020-2021
Academic Year (H) 1442
Bachelor AFM: M. Eddahbi

Solution of the second midterm exam ACTU-464-474 (25\%)

November 26, 2020 (two hours: from 3 to 5 PM)

Problem 1.

Let $\left(X_{k}\right)_{k=1}^{n}$ be a finite family of independent random variables (losses) such that X_{k} is exponentially distributed with parameter $\lambda_{k}>0$). If the moment generating functions of $S=\sum_{k=1}^{n} X_{k}$ is of the from

$$
\begin{equation*}
M_{S}(t)=\sum_{k=1}^{n} a_{k} \frac{\lambda_{k}}{\lambda_{k}-t} \text { for all } t<\min _{1 \leq k \leq n}\left(\lambda_{k}\right) \tag{0.1}
\end{equation*}
$$

where $\left(a_{k}\right)_{k=1}^{n}$ are real numbers such that $\sum_{k=1}^{n} a_{k}=1$.
Then the probability density function of S is given by

$$
f_{S}(x)=\sum_{k=1}^{n} a_{k} \lambda_{k} e^{-\lambda_{k} x} \text { for all } x>0 .
$$

Consider three independent losses $(n=3) X_{1}, X_{2}, X_{3}$. For $k=1,2,3, X_{k}$ has an exponential distribution with mean $\frac{1}{k}$. Denote by S the aggregate loss.

1. Find the Moment Generating Function of S.
2. Decompose MGF of S into the form (0.1) and find the density f_{S} of S.
3. Compare the derivative of $\left(1-e^{-x}\right)^{3}$ with $f_{S}(x)$. Calculate the 90% premium of the aggregate loss.

Solution:

1. We know that

$$
M_{X_{1}+X_{2}+X_{3}}(t)=M_{X_{1}}(t) M_{X_{2}}(t) M_{X_{3}}(t)=\frac{1}{1-t} \cdot \frac{2}{2-t} \cdot \frac{3}{3-t}
$$

2. By decomposition of fractions we have

$$
\frac{1}{1-t} \cdot \frac{2}{2-t} \cdot \frac{3}{3-t}=3 \frac{1}{1-t}-3 \frac{2}{2-t}+\frac{3}{3-t},
$$

therefore thanks to (0.1) we can write

$$
f_{S}(x)=3 e^{-x}-3\left(2 e^{-2 x}\right)+e^{-3 x}
$$

3. We observe that

$$
\left(\left(1-e^{-x}\right)^{3}\right)^{\prime}=3 e^{-x}\left(1-e^{-x}\right)^{2}=f_{S}(x)
$$

hence $F_{S}(x)=\left(1-e^{-x}\right)^{3}$ is the c.d.f. of S. The requested 90% premium of S is given by the solution of the equation

$$
\mathrm{P}\left(S \leq P_{0.9}\right)=0.9=F_{S}\left(P_{0.9}\right)
$$

that is $\left(1-e^{-P_{0.9}}\right)^{3}=0.90$, that is $1-(0.90)^{\frac{1}{3}}=e^{-P_{0.9}}$ and then

$$
P_{0.9}=-\ln \left(1-(0.90)^{\frac{1}{3}}\right)=\mathbf{3 . 3 6 6 5} .
$$

Problem 2. The random variables X_{1}, X_{2}, X_{3} and X_{4} are independent with probability mass functions $f_{1}(k), f_{2}(k), f_{3}(k)$ and $f_{4}(k)$, respectively. Set $S=X_{1}+X_{2}+X_{3}+X_{4}$. Your are given:

k	$f_{1}(k)$	$f_{2}(k)$	$f_{3}(k)$	$f_{4}(k)$
0	0.5	0.4	0.4	0.3
1	0.5	0.3	0.3	0.3
2	0	0.3	0.2	0.4
3	0	0	0.1	0

1. Complete the following table

k	$f_{1}(k)$	$f_{1} * f_{2}(k)$	$f_{1} * f_{2} * f_{3}(k)$	$f_{1} * f_{2} * f_{3} * f_{4}(k)$
0	0.5	$?$	0.080	0.024
1	0.5	0.35	$?$	0.084
2	0	0.30	0.265	$?$

2. What is $\mathrm{P}(S \geq 3)$?
3. Find the mixed distribution f_{X} of X. if the c.d.f. of X is

$$
F_{X}(x)=\left\{\begin{array}{ccc}
0 & \text { if } & x<0 \\
0.2+0.3 x & \text { if } & 0 \leq x<2 \\
1 & \text { if } & x \geq 2
\end{array}\right.
$$

4. Find $F_{X}(2.5-x)$ for $0<x<0.5$ and $F_{X}(2.5-x)$ for $0.5<x<2$
5. Let X_{1} and X_{2} be two i.i.d. random losses having the same distribution as X. Calculate $F_{X_{1}+X_{2}}(2.5)$. (Hint fir mixed distributions $F_{X_{1}+X_{2}}(s)=\sum_{k} f_{X_{1}}(k) F_{X_{2}}(s-k)+\int_{-\infty}^{+\infty} f_{X_{1}}(x) F_{X_{2}}(s-$ $x) d x$.

Solution:

1. Recall that $f_{1} * f_{2}(x)$ is the p.m.f. of $X_{1}+X_{2}$.

k	$f_{1}(k)$	$f_{1} * f_{2}(k)$	$f_{1} * f_{2} * f_{3}(k)$	$f_{1} * f_{2} * f_{3} * f_{4}(k)$
0	0.500	$\mathbf{0 . 2 0 0}$	0.080	0.0240
1	0.500	0.350	$\mathbf{0 . 2 0 0}$	0.0840
2	0.000	0.300	0.265	$\mathbf{0 . 1 7 1 5}$

2. What is

$$
\mathrm{P}(S \geq 3)=1-\mathrm{P}(S \leq 2)=1-0.024-0.0804-0.1715=\mathbf{0 . 7 2 4 1}
$$

3. X has a mixed distribution with probability function

$$
f_{X}(x)=\left\{\begin{array}{ccc}
\mathbf{0} & \text { if } & x<0 \\
\mathbf{0 . 2} & \text { if } & x=0 \\
\mathbf{0 . 3} & \text { if } & 0<x<2 \\
\mathbf{0 . 2} & \text { if } & x=2 \\
\mathbf{0} & \text { if } & x>2
\end{array}\right.
$$

4. We have $F(2.5-x)=\mathbf{1}$ for $0<x<0.5$, and $F(2.5-x)=0.2+0.3(2.5-x)=\mathbf{0 . 9 5}-\mathbf{0 . 3 x}$ for $0.5<x<2$)
5. We must use a combination of the discrete and continuous approach to find the convolution

$$
\begin{aligned}
F_{X_{1}+X_{2}}(2.5) & =f(0) \cdot F(2.5)+\int_{0}^{2} f(x) F(2.5-x) \mathrm{d} x+f(2) \cdot F(0.5) \\
& =(0.2) \cdot(1)+\int_{0}^{0.5}(0.3)(1) \mathrm{d} x+\int_{0.5}^{2}(0.3)(0.95-0.3 x) d x+(0.2)(0.35) \\
& =\mathbf{0 . 6 7 8 7 5}
\end{aligned}
$$

Problem 3. The distribution of aggregate claims has a compound Poisson distribution with parameter λ. The first three values of the distribution are

k	0	1	2
$F_{S}(k)$	$\frac{1}{e}$	$\frac{1}{e}$	$\frac{2}{e}$

Individual claim amounts can only have positive integral values.

1. Calculate $f_{X}(0)$ and λ.
2. Find $f_{S}(1)$ and $f_{S}(2)$, $\left.\operatorname{Hint} \mathrm{P}(S=k)=F_{S}(k)-F_{S}(k-1)\right)$.
3. Find $f_{X}(1)$ and $f_{X}(2)$,
4. Deduce from 3. $f_{X}(x)$ for all $x \neq 2$
5. Use Panjer's recursion to find $f_{S}(3)$ and $f_{S}(4)$.
6. Calculate the probability that the aggregate loss is greater than 4.5 .

Solution:

1. Since claim amounts are positive integers, $f_{X}(0)=\mathbf{0}$, and thus, with Poisson parameter λ,

$$
f_{S}(0)=F_{S}(0)=P_{N}(0)=\mathrm{P}(N=0)=e^{-\lambda}=\frac{1}{e} \text { which implies } \lambda=\mathbf{1}
$$

2. From the given information, $f_{S}(1)=F_{S}(1)-F_{S}(0)=0$, and $f_{S}(2)=F_{S}(2)-F_{S}(1)=\frac{1}{e}=$ 0.36788 .
3. Using Panjer's recursion when N is Poisson(1), we get

$$
0=f_{S}(1)=\frac{1}{1}\left[1 \cdot f_{X}(1) \cdot f_{S}(0)\right] \text { which implies } f_{X}(1)=\mathbf{0}
$$

and

$$
\frac{1}{e}=f_{S}(2)=\frac{1}{2}\left[1 \cdot f_{X}(1) \cdot f_{S}(1)+2 \cdot f_{X}(2) \cdot f_{S}(0)\right] \text { which implies } f_{X}(2)=\mathbf{1}
$$

4. For all $x \neq 2$ we have $f_{X}(x)=\mathbf{0}$ since $f_{X}(2)=1$.
5. Again Panjer's recursion leads to

$$
f_{S}(3)=\frac{1}{3}\left[1 \cdot f_{X}(1) \cdot f_{S}(2)+2 \cdot f_{X}(2) \cdot f_{S}(1)+3 \cdot f_{X}(3) \cdot f_{S}(0)\right]=\mathbf{0}
$$

and

$$
f_{S}(4)=\frac{1}{4}\left[2 \cdot f_{X}(2) \cdot f_{S}(2)\right]=\frac{1}{2 e}=\mathbf{0 . 1 8 3 9 4} .
$$

6. Finally

$$
\mathrm{P}(S>4.5)=1-F_{S}(4)=1-\sum_{k=0}^{4} f_{S}(k)=1-\frac{1}{e}-0-\frac{1}{e}-0-\frac{1}{2 e}=1-\frac{5}{2 e}=\mathbf{0 . 0 8 0 3 0}
$$

Problem 4.

The number of claims, N, made on an insurance portfolio follows the distribution:

n	0	2	3
$\mathrm{P}(N=n)$	0.7	0.2	0.1

If a claim occurs, the benefit is 0 or 10 with probability 0.8 and 0.2 , respectively. The number of claims and the benefit for each claim are independent. By convention $S=0$ if $N=0$.

1. Calculate the expected value of the aggregate loss
2. Calculate Variance of the aggregate loss
3. Calculate the probability that aggregate benefits will exceed expected aggregate benefits by more than 2 standard deviations of the aggregate benefits.

Solution:

1. We are given the distribution of N (claims number) and X (claim amount). The mean and variance of N and X are found as follows.

$$
\mathrm{E}[N]=(0)(0.7)+(2)(0.2)+(3)(0.1)=0.7 \text { and } \mathrm{E}[X]=(0)(0.8)+(10)(0.2)=2
$$

so the mean of the aggregate benefit S is $\mathrm{E}[S]=\mathrm{E}[N] \mathrm{E}[X]=\mathbf{1} .4$.
2. Moreover

$$
\mathrm{E}\left[N^{2}\right]=\left(0^{2}\right)(0.7)+\left(2^{2}\right)(0.2)+\left(3^{2}\right)(0.1)=1.7 \text { and } \mathrm{E}\left[X^{2}\right]=\left(0^{2}\right)(0.8)+\left(10^{2}\right)(0.2)=20,
$$

hence

$$
\operatorname{Var}(N)=\mathrm{E}\left[N^{2}\right]-(\mathrm{E}[N])^{2}=1.21 \text { and } \operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=16
$$

Thus variance of the aggregate benefits S is

$$
\operatorname{Var}(S)=\operatorname{Var}(N)(\mathrm{E}[X])^{2}+\mathrm{E}[N] \operatorname{Var}(X)=16.04
$$

The standard deviation of S is $\operatorname{sd}(S)=\sqrt{16.04}=4.005$.
3. We are asked to find

$$
\mathrm{P}(S-\mathrm{E}[S]>2 \operatorname{sd}(S))=\mathrm{P}(S>9.4)=1-\mathrm{P}(S \leq 9.4)=1-\mathrm{P}(S=0)
$$

let us first calculate $\mathrm{P}(S=0)$ we have

$$
\begin{aligned}
\mathrm{P}(S=0)= & \mathrm{P}(S=0, N=0)+\mathrm{P}(S=0, N=2)+\mathrm{P}(S=0, N=3) \\
= & \mathrm{P}(S=0 \mid N=0) \mathrm{P}(N=0)+\mathrm{P}(S=0 \mid N=2) \mathrm{P}(N=2) \\
& +\mathrm{P}(S=0 \mid N=3) \mathrm{P}(N=3) \\
= & \mathrm{P}(N=0)+\mathrm{P}\left(X_{1}=0, X_{2}=0 \mid N=2\right) \mathrm{P}(N=2) \\
& +\mathrm{P}\left(X_{1}=0, X_{2}=0, X_{3}=0 \mid N=3\right) \mathrm{P}(N=3) \\
= & 0.7+(0.8)^{2} \times 0.2+(0.8)^{3} \times 0.1=0.8792 .
\end{aligned}
$$

hence $\mathrm{P}(S-\mathrm{E}[S]>2 \operatorname{sd}(S))=1-0.8792=\mathbf{0 . 1 2 0 8}$.

Problem 5.

1. For a discrete probability distribution, you are given the recursion relation

$$
p_{k}=\frac{2}{k} p_{k-1}, \quad k=1,2, \ldots
$$

Determine p_{4}.
2. An actuary has created a compound claims frequency model taking non-negative integer values with the following properties:
(i) The primary distribution is the negative binomial with probability generating function

$$
\mathrm{P}_{N}(t)=\frac{1}{(1-3(t-1))^{2}}
$$

(ii) The secondary distribution is the Poisson with probability generating function $\mathrm{P}_{X}(t)=e^{\lambda(t-1)}$
(iii) The probability of no claims equals 0.067 . Calculate λ.
3. Let N be a discrete random variable with a probability function which is a member of the $(a, b, 0)$ class of distributions that describes the number of claims of an insurance company. You are given:
(i) $\mathrm{P}(N=0)=\mathrm{P}(N=1)=0.25$,
(ii) $\mathrm{P}(N=2)=0.1875$.

Calculate the probability that the number of claims equals to 3 .

Solution:

1. The Poisson distribution with parameter λ has

$$
\frac{p_{k}}{p_{k-1}}=\frac{(k-1)!}{e^{-\lambda} \lambda^{k-1}} \frac{e^{-\lambda} \lambda^{k}}{k!}=\frac{\lambda}{k}
$$

so that $a=0, b=\lambda$. Therefore, the distribution in this problem is Poisson with $\lambda=2$, and

$$
p_{4}=e^{-2} \frac{2^{4}}{4!}=e^{-2} \frac{2}{3}=\mathbf{0 . 0 9 0 2 2 4} .
$$

2. If S is a discrete non-negative integer random variable with probability generating function $\mathrm{P}_{S}(t)$, then $\mathrm{P}(S=0)=\mathrm{P}_{S}(0)$. Suppose that N is the primary distribution (negative binomial) and X is the secondary (Poisson), and let S denote the compound claims frequency model. Then the probability generating function of S is

$$
\mathrm{P}_{S}(t)=\mathrm{P}_{N}\left(\mathrm{P}_{X}(t)\right)=\left[1-3\left(e^{\lambda(t-1)}-1\right)\right]^{-2}
$$

Then, $0.067=\mathrm{P}_{S}(0)=\left[1-3\left(e^{\lambda(0-1)}-1\right)\right]^{-2}$. Solving this equation for λ results in $\lambda=\mathbf{3 . 1}$.
3. As a member of the $(a, b, 0)$ class of distributions, the probability mass function $p_{k}=\mathrm{P}(N=k)$ must satisfy $\frac{p_{k}}{p_{k-1}}=a+\frac{b}{k}$ for $k=1,2, \ldots$ From the given probabilities, we have

$$
\frac{p_{1}}{p_{0}}=\frac{0.25}{0.25}=1=a+b
$$

and

$$
\frac{p_{2}}{p_{1}}=\frac{0.1875}{0.25}=0.75=a+\frac{b}{2} .
$$

Solving the two equations for a and b results in $a=0.5$ and $b=0.5$. Then

$$
\frac{p_{3}}{p_{2}}=\frac{p_{3}}{0.1875}=a+\frac{b}{3}=0.5+\frac{0.5}{3}
$$

which implies that $p_{3}=\mathrm{P}(N=3)=\mathbf{0 . 1 2 5}$.

