King Saud University
College of Sciences
Mathematics Department

Academic Year (G) 2020-2021
Academic Year (H) 1442
Bachelor AFM: M. Eddahbi

March 7, 2021 from 3 to 5 PM, ACTU-464-474 (two pages) (For numerical values keep 5 digits after dot)

Midterm Exam I, Risk theory

Exercise 1

If N be a discrete non-negative random variable with p.m.f. p_{k}, a zero-modified distribution is of the form: $p_{k}^{M}=\frac{1-p_{0}^{M}}{1-p_{0}} p_{k}$ where $p_{0}^{M} \in[0,1)$.
Consider the zero-modified geometric distribution: $p_{0}^{M}=\frac{1}{2}, p_{k}^{M}=\frac{1}{6}\left(\frac{2}{3}\right)^{k-1}, k=1,2,3, \ldots$

1. Find the parameter $p=p_{0}$ of the initial geometric distribution p_{k} of N. (recall that $p_{k}=p(1-p)^{k}$, $k \geq 0$).
2. Let N^{M} be a r.v. whose distribution is the zero-modified geometric distribution p_{k}^{M} given above. Find moment generating function of N^{M}.
3. Find the exponential premium $\Pi_{\exp }(\alpha)=\frac{\ln \left(M_{N^{M}}(\alpha)\right)}{\alpha}$, for $\alpha=0.2$.

Solution:

1. Recall that a zero-modified distribution is of the form: $p_{k}^{M}=\frac{1-p_{0}^{M}}{1-p_{0}} p_{k}$. We know that for any $k \geq 1, p_{k}^{M}=\frac{1-p_{0}^{M}}{1-p_{0}} p_{k}$ then

$$
p_{k}=\frac{1-p_{0}}{1-p_{0}^{M}} p_{k}^{M}=2\left(1-p_{0}\right) \frac{1}{6}\left(\frac{2}{3}\right)^{k-1}=\frac{1-p_{0}}{3}\left(\frac{2}{3}\right)^{k-1}=p(1-p)^{k} \text { for any } k \geq 1
$$

Notice that $p_{0}=p$ thus in particular for $k=1$ we have $\frac{1-p}{3}=p(1-p)$ then $p=\frac{1}{3}$.
2. The m.g.f. of N^{M} is

$$
\begin{aligned}
M_{N^{M}}(\alpha) & =\sum_{k=0}^{\infty} e^{k \alpha} p_{k}^{M}=\frac{1}{2}+\sum_{k=1}^{\infty} e^{k \alpha} \frac{1}{6}\left(\frac{2}{3}\right)^{k-1}=\frac{1}{2}+\frac{1}{6} \times \frac{3}{2} \sum_{k=1}^{\infty}\left(\frac{2 e^{\alpha}}{3}\right)^{k} \\
& =\frac{1}{2}+\frac{1}{4} \sum_{k=1}^{\infty}\left(\frac{2 e^{\alpha}}{3}\right)^{k}=\frac{1}{2}+\frac{1}{4}\left(\frac{1}{1-\frac{2 e^{\alpha}}{3}}-1\right)=\frac{1}{4}\left(1+\frac{1}{1-\frac{2}{3} e^{\alpha}}\right)
\end{aligned}
$$

3. So for $\alpha=0.2$ we get

$$
M_{N^{M}}(0.2)=\frac{1}{4}\left(1+\frac{1}{1-\frac{2}{3} e^{0.2}}\right)=1.5960 .
$$

Thus

$$
\Pi_{\exp }(0.2)=\frac{\ln (1.5960)}{0.2}=\mathbf{2 . 3 3 7 5}
$$

Exercise 2

Consider a negative binomial random variable with parameters $\beta=0.5$ and $r=2.5$.

1. Determine the first four probabilities for this random variable.
2. Then determine the corresponding probabilities for the zero-modified version (with $p_{0}^{M}=0.6$).
3. Then determine the corresponding probabilities for the zero-truncated version.
(Hint $a=\frac{\beta}{1+\beta}$ and $\left.b=(r-1) a.\right)$

Solution:

1. We know that

$$
\begin{aligned}
p_{0} & =(1+\beta)^{-r}=(1+0.5)^{-2.5}=0.362887 \\
a & =\frac{\beta}{1+\beta}=\frac{0.5}{1.5}=\frac{1}{3} \text { and } b=(r-1) \frac{\beta}{1+\beta}=\frac{1}{2} .
\end{aligned}
$$

The first three recursions are

$$
\begin{aligned}
& p_{1}=p_{0}(a+b)=0.362887\left(\frac{1}{3}+\frac{1}{2}\right)=0.302406 \\
& p_{2}=p_{1}\left(a+b \frac{1}{2}\right)=0.302406\left(\frac{1}{3}+\frac{1}{2} \frac{1}{2}\right)=0.176404 \\
& p_{3}=p_{2}\left(a+b \frac{1}{3}\right)=0.176404\left(\frac{1}{3}+\frac{1}{2} \frac{1}{3}\right)=0.088202
\end{aligned}
$$

2. For the zero-modified random variable, $p_{0}^{M}=0.6$ arbitrarily. We have then,

$$
\begin{aligned}
p_{1}^{M} & =\frac{1-p_{0}^{M}}{1-p_{0}} p_{1}=\frac{1-0.6}{1-0.362887} 0.302406=0.189860 \\
p_{2}^{M} & =p_{1}^{M}\left(a+b \frac{1}{2}\right)=0.189860\left(\frac{1}{3}+\frac{1}{2} \frac{1}{2}\right)=0.110752 \\
p_{3}^{M} & =p_{2}^{M}\left(a+b \frac{1}{3}\right)=0.110752\left(\frac{1}{3}+\frac{1}{2} \frac{1}{3}\right)=0.055376 .
\end{aligned}
$$

3. For the zero-truncated random variable, $p_{0}^{T}=0$ by definition. Then,

$$
\begin{aligned}
p_{1}^{T} & =\frac{p_{1}}{1-p_{0}}=\frac{0.302406}{1-0.362887}=0.474651 \\
p_{2}^{T} & =p_{1}^{T}\left(a+b \frac{1}{2}\right)=0.474651\left(\frac{1}{3}+\frac{1}{2} \frac{1}{2}\right)=0.276880, \\
p_{3}^{T} & =p_{2}^{T}\left(a+b \frac{1}{3}\right)=0.276880\left(\frac{1}{3}+\frac{1}{2} \frac{1}{3}\right)=0.138440 .
\end{aligned}
$$

Exercise 3

Given a loss random variable X, under an excess of loss reinsurance arrangement such that the insurer pays $Y=\min (X, M)$ and the re-insurer pays $Z=\max (0, X-M)$.
Recall that if f is the p.d.f. of X then

$$
\mathrm{E}\left[Y^{n}\right]=\int_{0}^{\infty}(\min (x, M))^{n} f(x) \mathrm{d} x
$$

and

$$
\mathrm{E}\left[Z^{n}\right]=\int_{0}^{\infty}(\max (x-M ; 0))^{n} f(x) \mathrm{d} x
$$

1. Calculate the expected payment of the insurer if X is exponentially distributed with mean 200 and $M=100$.
2. Calculate the expected payment of the re-insurer if X is exponentially distributed with mean 200 and $M=100$.
3. Calculate the sum of the two expected valued found in 1. and 2.

Solution:

1. The expected payment of the insurer if X is exponentially distributed with mean 200 is given by

$$
\begin{aligned}
\mathrm{E}[Y] & =\int_{0}^{\infty} \min (x, M) f(x) \mathrm{d} x=\int_{0}^{M} \frac{x}{200} e^{-\frac{1}{200} x} \mathrm{~d} x+\int_{M}^{\infty} M f(x) \mathrm{d} x \\
& =200\left(1-e^{-\frac{M}{200}}\right)-M e^{-\frac{M}{200}}+M e^{-\frac{M}{200}}=200\left(1-e^{-\frac{M}{200}}\right)
\end{aligned}
$$

Hence for $M=100$, we get $\mathrm{E}[Y]=200\left(1-e^{-\frac{100}{200}}\right)=\mathbf{7 8 . 6 9 3 9}$.
2. The expected payment of the re-insurer if X is exponentially distributed with mean 200 is given by

$$
\begin{aligned}
\mathrm{E}[Z] & =\int_{0}^{\infty} \max (x-M ; 0) f(x) \mathrm{d} x=\int_{M}^{\infty}(x-M) \frac{1}{200} e^{-\frac{1}{200} x} \mathrm{~d} x \\
& =e^{-\frac{M}{500}} \int_{M}^{\infty}(x-M) \frac{1}{200} e^{-\frac{(x-M)}{200}} \mathrm{~d} x=e^{-\frac{M}{200}} \int_{0}^{\infty} z \frac{1}{200} e^{-\frac{z}{200}} \mathrm{~d} z=200 e^{-\frac{M}{200}}
\end{aligned}
$$

Hence for $M=100$, we get $\mathrm{E}[Z]=200 e^{-\frac{100}{200}}=\mathbf{1 2 1 . 3 0 6 1}$.
3. We have $\mathrm{E}[Y]+\mathrm{E}[Z]=78.6939+121.3061=\mathbf{2 0 0}$. In fact this should be equal to $\mathrm{E}[X]=200$.

Exercise 4

Assume that the loss X is exponentially distributed with parameter 0.05756 . Consider the proportional risk $Z=0.75 X$.

1. Calculate the charged premium Π_{SL} such that $\mathrm{P}\left(Z \leq \Pi_{\mathrm{SL}}\right)=0.9$
2. Calculate the charged premium $\Pi_{\text {Var }}$ such that $\left.\mathrm{P}\left(Z>\Pi_{\text {Var }}\right)\right)=0.15$
3. Calculate the charged premium $\Pi_{\text {sd }}$ such that $\mathrm{P}\left(Z \leq \Pi_{\mathrm{sd}}\right)=0.80$.

Solution:

1. We know that

$$
\mathrm{P}\left(Z \leq \Pi_{\mathrm{SL}}\right)=F_{X}\left(\frac{4}{3} \Pi_{\mathrm{SL}}\right)=1-e^{-0.05756 \times \frac{4}{3} \times \Pi_{\mathrm{SL}}}=0.899981
$$

that is $e^{-0.0767467 \Pi_{\mathrm{SL}}}=1-0.899981=0.100019$, then $\Pi_{\mathrm{SL}}=\mathbf{2 9 . 9 9 9 9} \simeq \mathbf{3 0}$.
2. We have

$$
\mathrm{P}\left(Z>\Pi_{\mathrm{Var}}\right)=0.15 \Longleftrightarrow e^{-0.05756 \frac{4}{3} \Pi_{\mathrm{Var}}}=0.15
$$

then $\Pi_{\mathrm{Var}}=-\frac{\ln (0.15)}{0.05756 \times 1.33333}=\mathbf{2 4 . 7 1 9 3}$.
3. We have

$$
\mathrm{P}\left(Z>\Pi_{\mathrm{sd}}\right)=0.2 \Longleftrightarrow e^{-0.05756 \times \frac{4}{3} \Pi_{\mathrm{sd}}}=0.2
$$

then $\Pi_{\mathrm{sd}}=-\frac{\ln (0.2)}{0.05756 \times 1.33333}=\mathbf{2 0 . 9 7 0 8}$.

Exercise 5

1. An agent has a net wealth 500 has accepted (and collected the premium for) a risk X with the following probability distribution: $\mathrm{P}(X=0)=\mathrm{P}(X=100)=\mathrm{P}(X=200)=\frac{1}{3}$. What is the maximum amount the agent would accept to pay an insurer to accept 80% of this loss? Assume the agent's utility function is $u(x)=\ln (x)$.
2. An insurer, with wealth 500 and the same utility function, $u(x)=\ln (x)$, is considering accepting the above risk. What is the minimum amount this insurer would accept as a premium to cover 80% of the loss? The positive solution to the equation $500^{3}=(500+x)(420+x)(340+x)$, is 84.26656 .
3. (2 marks) Verify if the premiums satisfy the natural order such that the deal can be made.

Solution:

1. The the maximum amount P^{+}is given by the equation

$$
\begin{aligned}
u\left(W-P^{+}\right) & =\mathrm{E}[u(W-X)] \Longleftrightarrow \ln \left(500-P^{+}\right)=\frac{u(500)+u(500-80)+u(500-160)}{3} \\
& =\frac{u(500)+u(500-80)+u(500-160)}{3}=\frac{\ln (500 \times 420 \times 340)}{3}=6.0279
\end{aligned}
$$

Which leads to $\ln \left(500-P^{+}\right)=6.0279$, then $P^{+}=500-e^{6.0279}=\mathbf{8 5 . 1 5 7 0 6}$.
2. The minimum amount P^{-}this insurer would accept to cover 80% of the loss is given by the equation.

$$
u(W)=\mathrm{E}\left[u\left(W+P^{-}-X\right)\right]
$$

that is

$$
\ln (500)=\frac{u\left(500+P^{-}\right)+u\left(420+P^{-}\right)+u\left(340+P^{-}\right)}{3}
$$

which is equivalent to

$$
3 \ln (500)=\ln \left(500^{3}\right)=\ln \left[\left(500+P^{-}\right)\left(420+P^{-}\right)\left(340+P^{-}\right)\right]
$$

solving for $P^{-}=84.26656$.
3. The deal can be make since $E[0.8 X]=\mathbf{8 0}<P^{-}=\mathbf{8 4 . 2 6 6 5 6}<P^{+}=\mathbf{8 5 . 1 5 7 0 6}$.

