King Saud University
College of Sciences
Mathematics Department

Academic Year (G) 2020-2021
Academic Year (H) 1442
Bachelor AFM: M. Eddahbi

Solution of the final exam ACTU-464-474 Spring 2021 (20\%)
April 19, 2021 (three hours: from 1:30 to 4:30 PM)
Keep four digits after dot and round by default there after.

Exercise 1 (4 marks)

1. An actuary have shown from available data that the number of claims in an insurance company is a member of $C(a, b, 0)$ class of distributions such that $p_{0}=p_{1}=\frac{1}{4}, p_{2}=\frac{3}{16}$. Find the expected number of claims.
2. Suppose that the number of claims N has a Poisson distribution with mean $\lambda=3$. Let $\left(p_{n}\right)_{n \geq 0}$ denotes the probability mass function of N. Calculate $\frac{p_{1442}}{p_{1441}}$.

Solution:

1. We know that

$$
p_{n}=p_{n-1}\left(a+\frac{b}{n}\right) \text { for all } n \geq 1
$$

(a) We have $p_{1}=p_{0}(a+b)$ and $p_{2}=p_{1}(a+b)$

$$
a+b=1 \text { and } a+\frac{b}{2}=\frac{3}{4}
$$

this gives $a=\frac{1}{2}, b=\frac{1}{2}$,
(b) N is Negative binomial $\mathcal{N B}(r ; p)$ where $p=1-a=\frac{1}{2}$ and $r=2$

$$
p_{4}=p_{3}\left(a+\frac{b}{4}\right)=p_{2}\left(a+\frac{b}{3}\right)\left(a+\frac{b}{4}\right)=\frac{3}{16} \frac{1}{4}\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)=\frac{5}{64}=0.08125 .
$$

(c) $\mathrm{E}[N]=\frac{r q}{p}=2$. (since $\left.p=q\right)$.
2. We know that $p_{n}=e^{-\lambda} \frac{\lambda^{n}}{n!}$ thus

$$
\frac{p_{1442}}{p_{1441}}=e^{-3} \frac{3^{1442}}{1442!} \frac{1441!}{3^{1441}} e^{3}=\frac{3}{1442}=0.00208 .
$$

Exercise 2 (4 marks) Losses in 2020 follow the density function $f_{X}(x)=3 x^{-4}, x>1$ and 0 otherwise where X is the loss in millions of dollars. Inflation of 5% impacts all claims uniformly from 2020 to 2021.

1. Determine the c.d.f. of losses for 2021
2. Find the probability that a 2021 loss exceeds 2.1 millions of dollars.

Solution:

1. The losses in 2021 can be written as $Y=1.05 X$ hence for $x>1.1$,

$$
F_{Y}(x)=\mathrm{P}(Y \leq x)=\mathrm{P}\left(X \leq \frac{x}{1.05}\right)=F_{X}\left(\frac{x}{1.05}\right)=\int_{1}^{\frac{x}{1.05}} 3 t^{-4} d t=\left[-\frac{1}{t^{3}}\right]_{1}^{\frac{x}{1.05}}=1-\frac{(1.05)^{3}}{x^{3}}
$$

2. The required probability is

$$
\mathrm{P}(Y>2.1)=1-F_{Y}(2.1)=\frac{(1.05)^{3}}{(2.1)^{3}}=\frac{1}{2^{3}}=0.125
$$

Exercise 3 (4 marks) A portfolio of independent insurance policies has three classes of policies:

Class	Number in Class	Probability of Claim per Policy	Claim Amount b_{k}
1	1000	0.1	30
2	2000	0.2	20
3	500	0.3	10

1. Calculate the expectation and variance of the aggregate loss S.
2. Use normal approximation to calculate Π_{SL} such that the probability of that the aggregate loss is less or equal than the Π_{SL} is equal to 0.95 .

Solution:

1. We have $\mathrm{E}[S]=\sum_{i=1}^{3} n_{k} b_{k} q_{k}=1000 \times 30 \times 0.1+2000 \times 20 \times 0.2+500 \times 10 \times 0.3=\mathbf{1 2 5 0 0}$. And

$$
\begin{aligned}
\sigma_{S}^{2} & =\operatorname{Var}(S)=\sum_{i=1}^{3} n_{k} b_{k}^{2} q_{k}\left(1-q_{k}\right) \\
& =1000 \times 30^{2} \times 0.1 \times 0.9+2000 \times 20^{2} \times 0.2 \times 0.8+500 \times 10^{2} \times 0.3 \times 0.7=\mathbf{2 1 9 5} \times \mathbf{1 0}^{\mathbf{5}}
\end{aligned}
$$

2. Under normal approximation the r.v. $T=\frac{S-\mathrm{E}[S]}{\sigma_{S}}$ follows a standard normal distribution, therefore

$$
\mathrm{P}\left(S \leq \Pi_{\mathrm{SL}}\right)=\mathrm{P}\left(\frac{S-\mathrm{E}[S]}{\sigma_{S}} \leq \frac{\Pi_{\mathrm{SL}}-12500}{1000 \sqrt{2195}}\right)=0.95
$$

The safety loading premium is $\Pi_{\mathrm{SL}}=12500+1.644845 \times 1000 \sqrt{2195}=\mathbf{8 9 5 6 2}$.

Exercise 4 (4 marks) For an insured portfolio, you are given:
(i) the number of claims has a geometric distribution with $\beta=\frac{1}{3}$,
(ii) individual claim amounts can take on values 3, 4 or 5 , with equal probability,
(iii) the number of claims and claim amounts are independent, and
(iv) the premium charged equals expected aggregate claims plus the variance of aggregate claims.

The p.m.f. of a geometric distribution with β is given by $p_{n}=\mathrm{P}(N=n)=\frac{\beta^{n}}{(1+\beta)^{n+1}}=q^{n}$ p for $n \geq 0$ with $p=1-\frac{\beta}{1+\beta}=\frac{1}{1+\beta}$.

1. Calculate the expected value and the variance of the aggregate claims.
2. Determine the exact probability that aggregate claims exceeds the premium given that $F_{S}(8)=\frac{31}{32}$.

Solution:

1. We know that $\mathrm{E}[S]=\mathrm{E}[N] \mathrm{E}[X]=\frac{1}{3} \times 4=\frac{4}{3}=1.3333$, and

$$
\operatorname{Var}(S)=\mathrm{E}[N] \operatorname{Var}(X)+\operatorname{Var}(N)(\mathrm{E}[X])^{2}=\frac{1}{3} \times \frac{2}{3}+\frac{4}{9} \times(4)^{2}=\frac{\mathbf{2 2}}{\mathbf{3}}=\mathbf{7 . 3 3 3 3}
$$

2. The Premium is $=\frac{4}{3}+\frac{22}{3}=\frac{26}{3}=8.6667$. Since S is integer-valued we have

$$
\mathrm{P}\left(S>\frac{26}{3}\right)=\mathrm{P}(S>8)=1-\mathrm{P}(S \leq 8)=1-F_{S}(8)=1-\frac{31}{32}=\frac{1}{32}=\mathbf{0 . 0 3 1 2 5}
$$

Exercise 5 (4 marks)

1. Find the quantile premium with a risk of 5% for loss random variable X which is exponentially distributed with mean $\theta=667.6236$.
2. The c.d.f. of aggregate losses S covered under a policy of stop-loss insurance is given by $F_{S}(x)=$ $1-\frac{4}{x^{2}}, \quad x>2$. Calculate $\mathrm{E}[1000 \max (S-10 ; 0)]$. (Hint: If X is r.v. with c.d.f. F_{X} then $\left.\mathrm{E}[\max (X-K, 0)]=\int_{K}^{\infty}\left(1-F_{x}(x)\right) d x\right)$.

Solution:

1. The equation $S_{X}(x)=e^{-\frac{x}{\theta}}=0.05$ implies that $x=-\theta \ln (0.05)=2.9957 \theta$ hence $\Pi_{0.05}=$ $2.9957 \times 667.6236=\mathbf{2 0 0 0}$.
2. We have

$$
\mathrm{E}\left[(S-10)^{+}\right]=\int_{10}^{\infty}(x-10) f_{S}(x) d x=\int_{10}^{\infty}(x-10) \frac{8}{x^{3}} d x=\frac{2}{5}
$$

thus

$$
\mathrm{E}\left[1000(S-10)^{+}\right]=\frac{2000}{5}=400
$$

Alternatively we can use

$$
\mathrm{E}\left[1000(S-10)^{+}\right]=1000 \int_{10}^{\infty}\left(1-F_{S}(x)\right) d x=1000 \int_{10}^{\infty} \frac{4}{x^{2}} d x=\frac{2000}{5}=\mathbf{4 0 0}
$$

