

First Mid Term, S2-1443H ACTU 475 Credibility Theory and Loss Distributions. Time: 90 minutes - Marks: 25

### Answer the following questions:

(Note that SND Table is attached in page 2)

## Q1:[6+3]

(a) If the random variable X has probability density function  $f(x) = (1 + 2x^2)e^{-2x}$ ,  $x \ge 0$ .

(i) Determine the survival function.

(ii) Determine the hazard rate function.

(iii) Determine the mean excess loss function.

(b) The cdf of a random variable is  $F(x) = 1 - x^{-2}$ ,  $x \ge 1$ . Determine the mean, median, and mode of this random variable.

# Q2:[6]

One hundred observed claims in 1995 were arranged as follows: 42 were between 0 and 300, 3 were between 300 and 350, 5 were between 350 and 400, 5 were between 400 and 450, 0 were between 450 and 500, 5 were between 500 and 600, and the remaining 40 were above 600. For the next three years, all claims are inflated by 10% per year. Based on the empirical distribution from 1995, determine a range for the probability that a claim exceeds 500 in 1998.

## Q3:[5+5]

(a) Seventy-five percent of claims have a normal distribution with a mean of 3,000 and a variance of 1,000,000. The remaining 25% have a normal distribution with a mean of 4,000 and a variance of 1,000,000. Determine the probability that a randomly selected claim exceeds 5,000.

(b) Let  $\Lambda$  have a gamma distribution and  $\operatorname{let} X | \Lambda$  have a Weibull distribution with conditional survival function  $S_{X|\Lambda}(x|\lambda) = e^{-\lambda x^{\gamma}}$ . Determine the unconditional or marginal distribution of X.

#### Standard Normal Cumulative Probability Table

| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
|     |        |        | _      |        |        |        |        |        |        |        |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.5 | 0.0159 | U.0100 | 0.0212 | 0.0230 | 0.0204 | 0.0209 | 0.0010 | 0.0340 | 0.0305 | 0.0009 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
|     |        | _      |        |        |        |        | _      |        |        |        |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9666 | 0.9693 | 0.9699 | 0.9706 |
| 1.2 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9736 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 25  | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0 9945 | 0.9946 | 0.9948 | 0 9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 27  | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
|     |        |        |        |        |        |        |        |        |        |        |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
| 3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
| 3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
| 3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
| 3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |
|     |        |        |        |        |        |        |        |        |        |        |

Cumulative probabilities for POSITIVE z-values are shown in the following table:

### The Model Answer

# Q1:[6+3]

(a)

(i)

The survival function is

$$S(x) = \int_{x}^{\infty} (1+2t^{2})e^{-2t}dt$$
  
=  $-\frac{1}{2}e^{-2t} + 2I$ , where  $I = \int_{x}^{\infty} t^{2}e^{-2t}dt$   
 $I = \int_{x}^{\infty} t^{2}e^{-2t}dt$   
=  $-\frac{1}{4}e^{-2t} - \frac{t}{2}e^{-2t} - \frac{t^{2}}{2}e^{-2t}$   
 $\therefore S(x) = -(1+t+t^{2})e^{-2t}\Big|_{x}^{\infty}$   
=  $(1+x+x^{2})e^{-2x}$ ,  $x \ge 0$ 

(ii)

 $\therefore$  The hazard rate function is

$$h(x) = -\frac{d}{dx} [\ln S(x)]$$
  
and  $\because S(x) = (1 + x + x^2)e^{-2x}$   
 $\ln S(x) = -2x + \ln(1 + x + x^2)$   
 $\therefore h(x) = 2 - \frac{1 + 2x}{1 + x + x^2}$   
or

$$h(x) = \frac{f(x)}{S(x)} = \frac{1 + 2x^2}{1 + x + x^2}$$

(iii)

The mean excess loss function is

$$e_X(x) = \frac{\int_x^\infty S(t)dt}{S(x)} \tag{1}$$

From (i)  $S(x) = (1 + x + x^2)e^{-2x}$  (2)

$$\int_{x}^{\infty} S(t)dt = -(1+t+\frac{1}{2}t^{2})e^{-2t}\Big|_{x}^{\infty}$$
$$= (1+x+\frac{1}{2}x^{2})e^{-2x}$$
(3)

 $\therefore$  By substituting (2) and (3) in (1), we get

$$e_X(x) = \frac{1 + x + \frac{1}{2}x^2}{1 + x + x^2}$$

(b)

The pdf is  $f(x) = 2x^{-3}, x \ge 1$ .

The mean is

$$E(X) = \int_1^\infty 2x^{-2} dx$$
$$= 2$$

To get the median, solve the equation  $F(x) = 1 - x^{-2} = 0.5$ 

$$\Rightarrow$$
 The median  $\simeq 1.4142$ 

The mode is the value at which the pdf is highest, so to get the mode,

 $\therefore$   $f(x) = 2x^{-3}$ ,  $x \ge 1$  is a decreasing function and its highest value at x = 1

 $\therefore$  The mode =1

#### Q2:[6]

| The amount  | 0-300 | 300-350 | 350-400 | 400-450 | 450-500 | 500-600 | 600- |
|-------------|-------|---------|---------|---------|---------|---------|------|
| in 1995     |       |         |         |         |         |         |      |
|             |       |         |         |         |         |         |      |
| # of claims | 42    | 3       | 5       | 5       | 0       | 5       | 40   |
|             |       |         |         |         |         |         |      |

For the next three years, all claims are inflated by 10% per year

In 1996  $\rightarrow$  1.1 X, in 1997  $\rightarrow\,$  1.21 X and in 1998  $\,\rightarrow\,$  1.331 X

where X is the random variable of the claim in 1995 and Y=1.331 X is the random variable of the claim in 1998.

$$Pr(Y > 500) = Pr(X > 500 / 1.331) = Pr(X > 376)$$

From given data, Pr(X > 350) = 55/100 = 0.55 and Pr(X > 400) = 50/100 = 0.50

 $\therefore 0.50 < \Pr(Y > 500) < 0.55$ 

### Q3:[5+5]

#### (a)

For this mixture distribution,

$$F(5000) = 0.75\Phi\left(\frac{5000 - 3000}{1000}\right) + 0.25\Phi\left(\frac{5000 - 4000}{1000}\right)$$
$$= 0.75\Phi(2) + 0.25\Phi(1)$$
$$= 0.75(0.9772) + 0.25(0.8413)$$
$$= 0.9432$$

 $\therefore$  Pr(X > 5000) = 1-0.9432 = 0.0568, where X is a randomly selected claim.

let  $\Lambda \sim \text{gamma}(\theta, \alpha), X | \Lambda \sim \text{weibull}(\lambda, \gamma)$   $\therefore S_{X|\Lambda}(x|\lambda) = e^{-\lambda x^{\gamma}}$   $\therefore A(x) = x^{\gamma}$   $\therefore S_X(x) = E[e^{-\Lambda A(x)}]$  $= M_{\Lambda}[-A(x)]$ 

$$\therefore S_X(x) = M_{\Lambda}[-x^{\gamma}]$$

and  $:: M_{\Lambda}(z) = (1 - \theta z)^{-\alpha}$  $:: S_X(x) = (1 + \theta x^{\gamma})^{-\alpha}$ 

which is a Burr distribution with parameters

 $\theta \rightarrow \theta^{\frac{-1}{\gamma}}, \ \alpha \rightarrow \alpha$