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ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  

Answer the following questions.  
(Note that SND Table is attached in page 2)    

 

Q1: [3+5] 
There are two types of drivers. Good drivers make up 75% of the population and in one year have 

zero claims with probability 0.8, one claim with probability 0.1, and two claims with probability 

0.1. Bad drivers make up the other 25% of the population and have zero, one, or two claims with 

probabilities 0.6, 0.2, and 0.2, respectively.                                   

(a) Describe this process by using the concept of the risk parameter .  

(b) For a particular policyholder, suppose that we have observed 1 0=x  and  2 1=x  for past claims.  

Determine the posterior distribution of 
1 20,  1X X = =  and the predictive distribution of 

3 1 20,  1.= =X X X  

Q2: [6+3] 
(a) Seven losses are observed as 27, 82, 115, 126, 155, 161 and 243. Determine the maximum 

likelihood estimates of the parameter    for the inverse exponential and inverse gamma with 2 =  

distributions. Also, find the value of the log-likelihood function in each case.  

Hint: For inverse gamma distribution 
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(b) Let  have a gamma distribution and letX   have a Weibull distribution with conditional 

survival function ,  0.( ) x
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 Determine the unconditional or marginal distribution  

of .X  

 

Q3: [4+4] 
Suppose that there were 10 observations of claims with five being zero and others being 253, 398, 

439, 129, 627. Let the manual premium 210=M  and assume that the number of claims has a 

Poisson distribution. Determine the full credibility and partial credibility according to the average 

number of claims. Use 0.05r =  and 0.95.p =  

 ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
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The Model Answer 
 

 

Q1: [3+5] 
 
(a)  
 

 x  Pr( )X x G=  =  Pr( )X x B=  =     Pr( ) =  

 0 0.8 0.6 G  0.75 

 1 0.1 0.2 B  0.25 

 2 0.1 0.2   
 

(b) 

For the posterior distribution, the posterior probabilities are given by  
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(0,1) 0.8(0.1)(0.75) 0.6(0.2)(0.25)
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For the predictive distribution, the predictive probabilities are given by  

3
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(1 0,1) (1 ) ( 0,1)
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3
and (2 0,1) (2 ) ( 0,1)

                  (2 ) ( 0,1) (2 ) ( 0,1)
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Q2: [6+3] 
 

(a)  
(1) For inv. exponential distribution, the likelihood function is 
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(2) To get max. estimate of    (i.e. ̂ ), set ( ) 0 =l  

1
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 = − =l n ny  

1 ˆ 1 /  i.e.  
−

 = = yy  

ˆ 84.7    

(3) The value of the log-likelihood function for inv. exponential distribution is given by 
7
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(4) For inv. gamma distribution with 2, = the likelihood function is 
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(5) To get ˆ,  let ( ) 0 =l  
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(6) The value of the log-likelihood function for inv. gamma distribution is given by 
7
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14 ln(169.404694) 14 3(32.90166107)
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(b) 

weibull( , ),  ( )
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 ( ) (1 )  − = +XS x x  

which is a Burr distribution with the usual parameter   replaced by  
1

.
−

 

 

Q3: [4+4] 
 

1. For full credibility 

 

2 2

0

at 0.95,  ( ) (1 ) / 2 0.975

1.96 (by using SND table)
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0 and the expected 5o1536.64  number f 0claims . is  = =  

3073.28 n  

2. For partial credibility 

3073.28
10The credibility factor is 0.057                                        =Z  
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The partial credibility through premium is

(1 )

   0.057(184.6) (1 0.057)(210)

208.55

= + −

= + −

 
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