King Saud University College of Sciences Department of Mathematics

First Midterm Exam, S1-1447H ACTU 475

Credibility Theory and Loss Distributions
Time: 90 Minutes - Marks: 25

Answer the following questions.

Q1: 10[2+6+2]

- (a) If the random variable X has the survival function $S(x) = (1 + x + x^2)e^{-2x}$, $x \ge 0$, Determine the probability density and hazard rate functions.
- (b) An automobile insurance policy with no coverage modifications has the following possible losses, with probabilities in parentheses:
- 100(0.4), 500(0.2), 1,000(0.2), 2,500(0.1), and 10,000(0.1). Determine the probability mass functions and expected values for each of the following.
- (i) The excess loss and left censored and shifted variables, where the deductible is set at 750.
- (ii) The limited loss variable with a limit of 750.
- (c) Show that $E(X) = e(d)S(d) + E(X \wedge d)$

Q2: [3+3]

- (a) One hundred observed claims in 2022 were arranged as follows: 42 were between 0 and 300, 3 were between 300 and 350, 5 were between 350 and 400, 5 were between 400 and 450, 0 were between 450 and 500, 5 were between 500 and 600, and the remaining 40 were above 600. For the next three years, all claims are inflated by 5% per year. Based on the empirical distribution from 2022, determine a range for the probability that a claim exceeds 500 in 2025.
- (b) Let $X|\Lambda$ have an exponential distribution with parameter $1/\Lambda$. Let Λ have a gamma distribution. Determine the unconditional (mixture) distribution of X.

Hint: replace θ in the gamma distribution by its reciprocal.

Q3: [3+3+3]

Let X have cdf $F_X(x) = 1 - \left(\frac{\theta}{x+\theta}\right)^{\alpha}$. Determine the cdf of the inverse, transformed, and inverse transformed distributions. Clarify the names of distributions.

The Model Answer

Q1: 10[2+6+2]

(a)

$$S(x) = (1 + x + x^2)e^{-2x}, x \ge 0$$

The probability density function is

$$f(x) = -S'(x)$$

$$= -(1+2x)e^{-2x} + 2(1+x+x^2)e^{-2x}$$

$$\therefore f(x) = (1+2x^2)e^{-2x}$$

The hazard rate function is

$$h(x) = -\frac{d}{dx}[\ln S(x)]$$

$$S(x) = (1 + x + x^2)e^{-2x}$$

$$\ln S(x) = -2x + \ln(1 + x + x^2)$$

$$h(x) = 2 - \frac{1 + 2x}{1 + x + x^2}$$

or simply,

$$h(x) = \frac{f(x)}{S(x)} = \frac{1 + 2x^2}{1 + x + x^2}$$

(b)

(i)

x_{j}	100	500	1,000	2,500	10,000
$p(x_j)$	0.4	0.2	0.2	0.1	0.1

$$S(d) = S(750)$$

= $Pr(X > 750)$
= 0.4

For the mean of excess loss variable

$x_j - d$	250	1,750	9,250
$\frac{p(x_j)}{S(d)}$	0.5	0.25	0.25

$$\therefore e_X(d) = 250(0.5) + 1750(0.25) + 9250(0.25)$$
$$= 2875$$

For the mean of left censored and shifted variable

$$E(Y^L) = E[(X-d)_+]$$

$x_j - d$	0	250	1,750	9,250
$p(x_j)$	0.6	0.2	0.1	0.1

$$E(Y^{L}) = 0(0.6) + 250(0.2) + 1750(0.1) + 9250(0.1)$$
$$= 1150$$

(ii)

For the mean of limited loss variable

$x_j \wedge d$	100	500	750
$p(x_j)$	0.4	0.2	0.4

$$E(X \land d) = 100(0.4) + 500(0.2) + 750(0.4)$$
$$= 440$$

$$: E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$= \int_{-\infty}^{d} x f(x) dx + \int_{d}^{\infty} (x - d) f(x) dx + d \int_{d}^{\infty} f(x) dx$$

$$: E(X) = \int_{-\infty}^{d} x f(x) dx + \int_{d}^{\infty} (x - d) f(x) dx + dS(d)$$

$$: E(X-d)_{+} = \int_{d}^{\infty} (x-d)f(x)dx = e(d)S(d)$$

and

$$:: E(X \wedge d) = \int_{-\infty}^{d} x f(x) dx + dS(d)$$

$$\therefore E(X) = e(d)S(d) + E(X \wedge d)$$

Q2: [3+3]

(a)

The claim amoun	0-300	300-350	350-400	400-450	450-500	500-600	600-
in 2022							
# of claims	42	3	5	5	0	5	40

For the next three years, all claims are inflated by 5% per year

In $2023 \rightarrow 1.05 \text{ X}$, in $2024 \rightarrow 1.1025 \text{ X}$ and in $2025 \rightarrow 1.157625 \text{ X}$

Where, X is the random variable of the claim amount in 2022 and Y=1.157625 X is the random variable of the claim amount in 2023. Pr(Y > 500) = Pr(X > 500/1.157625) = Pr(X > 431.9)

From given data, Pr(X > 400) = 50/100 = 0.5 and Pr(X > 450) = 45/100 = 0.45

(b)

Let $X | \Lambda \sim \exp(\lambda)$, $\Lambda \sim \operatorname{gamma}(\alpha, \theta)$

$$\therefore f_X(x) = \int f_{X|\Lambda}(x|\lambda) f_{\Lambda}(\lambda) d\lambda$$

$$f_X(x) = \frac{\theta^{\alpha}}{\Gamma(\alpha)} \int \lambda e^{-\lambda x} \lambda^{\alpha - 1} e^{-\theta \lambda} d\lambda$$

$$= \frac{\theta^{\alpha}}{\Gamma(\alpha)} \int_0^{\infty} \lambda^{\alpha} e^{-\lambda(x+\theta)} d\lambda$$

$$= \frac{\theta^{\alpha}}{\Gamma(\alpha)(x+\theta)^{\alpha + 1}} \int_0^{\infty} u^{\alpha} e^{-u} du$$

$$= \frac{\theta^{\alpha}\Gamma(\alpha + 1)}{\Gamma(\alpha)(x+\theta)^{\alpha + 1}} = \frac{\theta^{\alpha}\alpha\Gamma(\alpha)}{\Gamma(\alpha)(x+\theta)^{\alpha + 1}}$$

$$\therefore f_X(x) = \frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}},$$

Which is the pdf of the Pareto (α, θ) distribution.

Q3: [3+3+3]

For Pareto
$$(\alpha, \theta)$$
 distribution, $F_X(x) = 1 - \left(\frac{\theta}{x + \theta}\right)^{\alpha}$.

So, we could obtain the following:

(1) The inverse distribution has cdf

$$F_{Y}(y) = 1 - F_{X}(y^{-1}), \quad \tau = -1$$

$$= \left(\frac{\theta}{y^{-1} + \theta}\right)^{\alpha}$$

$$\therefore F_{Y}(y) = \left(\frac{y}{y + \theta^{-1}}\right)^{\alpha}$$

which is the inverse Pareto (α, θ^{-1}) distribution.

(2) The transformed distribution has cdf

$$F_{Y}(y) = F_{X}(y^{\tau}), \qquad \tau > 0$$

$$= 1 - \left(\frac{\theta}{y^{\tau} + \theta}\right)^{\alpha}$$

$$\therefore F_{Y}(y) = 1 - \left(\frac{1}{1 + (y/\theta^{1/\tau})^{\tau}}\right)^{\alpha}$$

which is the Burr $(\alpha, \theta^{1/\tau}, \tau)$ distribution.

(3) The inverse transformed distribution has cdf

$$F_{Y}(y) = 1 - F_{X}(y^{-\tau}) \qquad \text{Theorem for negative } \tau$$

$$= 1 - \left[1 - \left(\frac{\theta}{\theta + y^{-\tau}}\right)^{\alpha}\right]$$

$$= \left(\frac{\theta}{\theta + y^{-\tau}}\right)^{\alpha}$$

$$= \left(\frac{y^{\tau}}{y^{\tau} + \theta^{-1}}\right)^{\alpha}$$

$$= \left(\frac{y^{\tau}}{y^{\tau} + (\theta^{-1/\tau})^{\tau}}\right)^{\alpha}$$

$$\therefore F_{Y}(y) = \left(\frac{(y/\theta^{-1/\tau})^{\tau}}{1 + (y/\theta^{-1/\tau})^{\tau}}\right)^{\alpha}$$

which is the inverse Burr $(lpha, heta^{-{
m l}/ au}, au)$ distribution.