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Answer the following questions.
(Note that SND Table is attached in page 3)
Q1: [2+2+2+1]

Determine the mean excess loss, limited expected value and probability density functions for the
following model.

0, <0
F(z)= 2000 \*

and show that this model is a member of the transformed beta family.

INa+7)y(xl6)”

Note that: the pdf of generalized beta is defined as f(x) = .
(@) (2)zl+(z/0) 1"

Q2: [4+3]

(a) One hundred observed claims in 2021 were arranged as follows: 42 were between 0 and 300, 3 were
between 300 and 350, 5 were between 350 and 400, 5 were between 400 and 450, 0 were between 450
and 500, 5 were between 500 and 600, and the remaining 40 were above 600. For the next three years,
all claims are inflated by 10% per year. Based on the empirical distribution from 2021, determine a range
for the probability that a claim exceeds 500 in 2024.

(b) Show that the gamma distribution is a member of the linear exponential family, then derive the mean
and variance of the gamma distribution.

(xlg)ae—:clﬁ
(@)

Hint: For gamma distribution f(z]e,0)=

Q3: [3+3]

Let a random sample of 6 insurance payments for a random variable X is givenas 3,6, 7, 8, 10, 12.
Find the mean of X and the value of the log-likelihood function in each of the following two cases.
(a) If X is assumed to have an exponential distribution

(b) If X is assumed to have a gamma distribution with a=6.



Q4: [5+5]

(a) The average claim size for a group of insureds is 1,500, with a standard deviation of 7,500. Assume
that claim counts have the Poisson distribution. Determine the expected number of claims so that the
total loss will be within 5% of the expected total loss with probability 0.90.

(b) Suppose that the number of claims from m; policiesis N, in year j for a group policyholder with risk

parameter ® has a Poisson distribution with mean m]@, thatis, for j=1,...,n,

(m‘ﬂ)‘”e*mﬂ
x!
where © has a gamma distribution with parameters « and /. Determine the Bihlmann- Straub

PI(N, =2|©=0) = L £=012,..,

estimate of the expected number of claims in year n +1 for the m_, policies.

Q5: [5+5]

Risk 1 produces claims of amounts 100, 1,000, and 20,000 with probabilities 0.5, 0.3, and 0.2,
respectively. For risk 2, the probabilities are 0.7, 0.2 and 0.1. Risk 1 is twice as likely as risk 2 of being
observed. A claim of 100 is observed, but the observed risk is unknown.

(a) Determine the Bayesian credibility estimate of the expected value of the second claim amount from
the same risk.

(b) Determine the Bihlmann credibility estimate of the expected value of the second claim amount from
the same risk.
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Q1: [242+2+1]
(i)

The mean excess loss function is

I;S(x)dx 2000 3
ey (d)= Wl S(z) = ( z+2000)
[ (285) da
. —dd T
sy (d) = (s )3
d+2000
— 2000+d
2
(ii)

The Model Answer

To get the limited expected value function F(X A u)

E(X Au) :—_T F(:L’)dzn+].5(:c)dx

2+2000

= E(XAu)=0+T( 200 dx
0

U
(z +2000)
-2

= (2000)° [

0

" BE(X Au) =1000 [1_ 4'000'000}
(u+2000)?

(iii)
To get the pdf of the given model

f(a)=F (z)
_ 3(2000)°

T (2+2000)* z>0

Which is the pdf of the Pareto distribution.

(iv)



For X ~ Transformed beta («,8,7,7) generalized beta
Ta+7)y(x!6)”

1= o @iy
at y=7=1
3 INa+)(z/6)
W= 1) = LS rDalis (o] 0
B al(z]6)
(a=D'afl+(z/ 6"
_ g / [.’I] n ejaﬂ
0 o
s f(x) = L“lwhich is a Pareto Prob. density function  (2)
(z+6)*"

.. The given model where o =3, € =2000 is a member of the transformed beta family.
Q2: [443]
(a)

The amount 0-300 300-350| 350-400f 400-450| 450-500f 500-600 600-
in 2021

# of claims 42 3 5 5 0 5 40

For the next three years, all claims are inflated by 10% per year
In2022 — 1.1 X,in 2023 — 1.21 Xand in 2024 — 1.331 X

where X is the random variable of the claim in 1995 and Y=1.331 X is the random variable of the claim in
2024. Pr(Y >500) = Pr(X >500/1.331) = Pr(X > 376)

From given data, Pr(.X >350) =55/100=0.55 and Pr(X > 400) =50/100=0.50
. 0.50<Pr(Y >500) < 0.55

(b)

For X ~ gamma(a,0)



g—axa—le—zlﬂ

= f(z;0) = (@)

r(0)z

p(r)e

early, f(z;0) = ————
Clearly, f(z;0) 20)

_ @) e
60{

where r(0)=-1/6, q(6) =0" and p(z) = :I:‘H/F(a)
.~. The gamma distribution is a member of the linear exponential family.

.-. The mean,

B0 =u(0) =10 (qegiz 5

B aea—l
1/ 6%. 6“

and the variance,

Var(X) =v(6)

_H1©O

r(6)
__a_
1/ 6?

Q3: [3+3]
(a)

= a6?

The likelihood function is
L(0) = Hf(xj 0)
= [(3]0)/(6|6)f(7|0)(8]0)f(10]0)f(12]0)

1 6—1/9(3+6+7+8+10+12)
o°



The loglikelihood function is

46
0)=-2-6Ing
(9) )

Toget 6, set[(6)=0
46 6

=1(0)=7~-=0

ot
6
=7.6667
. E(X)=0=1.6667

The loglikelihood function is

46
10)=-2-6Ing
(0)= )

U0)=——2_ _6In7.6667
7.6667

=-18.2213

(b)

For a gamma distribution with « =6, f($j|6’) =

506 T/(9

):iln ‘9 Zln
j=1

6
=5 Inz, —36|n9—9’12xj ~6In(120)
i=1 i=1

set 1(0)=0

6
=-360"+607°> z,=0
<

—360+60722=0 (xZ)

0=

ols |

. 0=1.2778



.. BE(X)=a0=6(1.2778)=17.67

~.1(6) =5(11.7032) - 36In(L.2778) —(ij— 28.7250
1.2778
= -15.0334
Q4: [5+45]

(a)

at p=0.90, ®(y,)=(1+p)/2=0.95

=y, =1.645 (by using SND table)

=4, =(, /)% = (1.645/0.05)* =1082.41

To get the expected number of claims, use the following formula:

nA = A1+ (%)2]
where o2=7500%, #=1500

. The expected # of claims =1082.41[1+ (%)Z]
— 28,142.66

(b)

Let Xj = Nj /mj be the average of claims per individual in year 7.

Nj |® has a Poisson distribution with mean m]@,

N. m,0
E(X;|©)=E| —10 |=——=0 = u(0)
’ m]. mj
and
N,
Var(X,|©) = Var{—f Q= 9}
m;
[¢)
=—Var(N |©) =—%
J J
_6 _v(©)
m. m



1 =FE[u(0)]=E(®)=qapf is the expected value of hypothetical means, where ® ~ gamma(«, S),

v =E[v(®)] = E(®) = af is the expected value of process variance and a = Var(®) = aff* is the variance of
hypothetical means.
v 1 m mp

Sk=—=—,2= = :
a f m+k mp+1

So, the Bihlmann-Straub estimate for one policyholder is

p-_"P f+(1— mp j,u
mpf+1 mpf+1

b x, 1 aff where X=m™> m X,
mpB+1 mpB+1 i

For year n+1, the estimateis m,,P.

Q5: [5+5]

The required calculations are given in the following table.

Risk | 100 |1,000| 20,000 #(®)| v(®) Pr(®@=6

1 0.5 0.3 0.2 4,350 61,382,500 2/3

2 0.7 0.2 0.1 2,270 35,054,100 1/3

(a) To determine the Bayesian credibility estimate of the expected value of the second claim amount from

the same risk, we do the following.

Clearly, 7(6=1) =§, 7(0=2) =%

The marginal probability is f, (z) = Zf(x|t9)7r(z9)
f(100) = f(100[1) (1) + £(100[2)(2)
- o.s(éjm.?(lj i
3 3) 30

The posterior probabilities are given by



7(1{100) = Ja0OB® _10 7(2[100) s 07
f@oo) 17 17 17

The hypothetical means are
(1) =4350, u(2)=2270
The expected next value through Bayesian premium is

E(X, |100) = 72'(1|100),u(1) +7(2 |100)y(2)
=3,493.53
where X, =100.

(b) To determine the BiihImann credibility estimate of the expected value of the second claim amount
from the same risk, we should find the following quantities.

#=E[u(0)]
=(2/3)(4350)+(1/3)(2270)=3,656.667,

v=FE[v(0)]
=(2/3)(61,382,500)+(1/3)(35,054,100)=52,606,366.67,

a =var[u(©)]
= (2/3)(4350)° + (1/ 3)(2270)2 - 3,656.667> = 961, 419.7845,

p=L
a

=54.71737,

n

n+k
1

1+54.71737
1

" 5571737

7 =

=0.0179477.

The Bihlmann estimate is

10



BE(X,[100)=P, =ZX +(1- Z)u
=0.0179477(100) + (1—0.0179477)(3,656.667)
=3,592.83.

where X, =100.
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