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Answer the following questions:  

(Note that SND Table is attached in page 3)    

Q1: [6+3] 

(a) Actuaries at an Insurance Services Office, considered a mixture of two Pareto distributions as follows  

  

 

Determine the mean and variance of this mixture distribution. 

 (b) The cdf of a random variable X  is ( ) 1 exp ,  0.
x

F x x


 
    

 
 

 Find ( )Xe x  and ( ).E X x  

Q2: [4+2] 

Consider the exponential-inverse Gaussian frailty model with 

( ) ,  0
2 1

a x
x





 


 

(a) Determine the conditional survival function ( ).XS x 


 

(b) If   has a gamma distribution with parameters 1   and   replaced by 2 ,  determine the 

marginal or unconditional survival function of .X  

Q3: [5+5] 

(a) An insurance company has decided to establish its full-credibility requirements for an individual state 

rate filing. The full-credibility standard is to be set so that the observed total amount of claims underlying 

the rate filing would be within 5% of the true value with probability 0.90. The claim frequency follows a 

Poisson distribution and the severity distribution has pdf 
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Determine the expected number of claims necessary to obtain full credibility using the normal 

approximation. 

(b) For a particular policyholder, the manual premium is 600 per year. The past claims experience is given 

in the following table 

 Year 1 2 3 

 Claims 475 550 400 

Determine the full credibility and partial credibility through premium by assuming the normal 

approximation. Use 0.05r   and 0.95.p   

Q4: [5+5] 

(a) There are two types of drivers. Good drivers make up 75% of the population and in one year have zero 

claims with probability 0.8, one claim with probability 0.1, and two claims with probability 0.1. Bad drivers 

make up the other 25% of the population and have zero, one, or two claims with probabilities 0.6, 0.2, 

and 0.2, respectively.                                   

(i) Describe this process by using the concept of the risk parameter .  

(ii) For a particular policyholder, suppose that we have observed 1 20 and 1x x   for past claims. 

Determine the posterior distribution of 1 20,  1X X    and the predictive distribution of 

3 1 20,  X 1.X X    

(b) Claim sizes have an exponential distribution with mean .  For 80% of risks, 8,  and for 20% of risks, 

2.   A randomly selected policy had a claim of size 5 in year 1. Determine both the Bayesian and 

Bühlmann estimates of the expected claim size in year 2. 

 

Q5: [5] 

 

A ground up loss X has a deductible of 7 applied. A random sample of 6 insurance payments (after 

deductible is applied) is given as 3, 6, 7, 8, 10, 12. If X is assumed to have an exponential distribution, 

apply maximum likelihood estimation to estimate the mean of X and the value of the log-likelihood 

function. 

 ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
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The Model Answer 

Q1: [6+3] 

(a) 

For the mixture of 2 Pareto distributions 

The mth moment of a k-point mixture distribution is given by 

11
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( ) [ ( ) ... ( )]

 ( )  = ( ) ... ( )

For  1 and two point mixture distribution

 ( )  = ( ) (1 ) ( )  
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For Pareto - ( , )   
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The mean is given by 
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Similarly, for the second moment 
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(b) 

The mean excess function is

( )
( )                                 
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( ) exp   
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.exp
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Q2: [4+2] 

(a)

We first find ( )A x  
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(b)

 (2 ,1)              gamma   

The moment generating function of the frailty random variable   is  
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The marginal survival function is 
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Which is a Pareto distribution. 

Q3: [5+5] 

(a) 

2 2

0

at 0.90,  ( ) (1 ) / 2 0.95

1.645 (by using SND table)

( / ) (1.645 / 0.05) 1082.41
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p y p

y

y r
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5,000 10,000 5,000
                 =

3 9 9
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To get the expected number of claims, use the following formula:

                              [1 ( ) ]

5,000 10,000
where = , =

9 9

 The expected # of claims 1082.41[1 0.5]

                       

n 


 

 

 

  

                       1623.615                              

 

(b) 

2 2

0

at 0.95,  ( ) (1 ) / 2 0.975

1.96 (by using SND table)

( / ) (1.96 / 0.05) 1536.64

p

p

p

p y p
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2 2 2
2

475 550 400
The mean is ( ) 475,

3

( )
0 75 75

variance is 5625
1 2
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For full credibility 

5625
1536.64

475

38.3095845
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2 2
0 /

3
38.3095845

The credibility factor is 

                                          0.279838

nZ
  



   

The partial credibility through premium is

(1 )

     0.279838(475) (1 0.279838)(600)

565.02025

c

c

P ZX Z M

P

  

  

 

 

Q4: [5+5] 

(a) 

(i) 

 x  Pr( )X x G    Pr( )X x B       Pr( )   

 0 0.8 0.6 G  0.75 

 1 0.1 0.2 B  0.25 

 2 0.1 0.2   

 

(ii) 

For the posterior distribution, the posterior probabilities are given by  

1 2

(0 ) (1 ) ( )
( 0,1)

(0,1)

where (0,1) (0 ) (1 ) ( )

X

X X X

f G f G G
G

f

f f f





   
 




 

(0,1) 0.8(0.1)(0.75) 0.6(0.2)(0.25)

             0.09

0.8(0.1)(0.75)
( 0,1) 0.67

0.09

0.6(0.2)(0.25)
( 0,1) 0.33

0.09

Xf

G

B





 







 

For the predictive distribution, the predictive probabilities are given by  
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3
(0 0,1) (0 ) ( 0,1)

                  (0 ) ( 0,1) (0 ) ( 0,1)

                  0.8(0.67) 0.6(0.33)

                  0.734,

X Xf f
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(1 0,1) (1 ) ( 0,1)

                  (1 ) ( 0,1) (1 ) ( 0,1)

                  0.1(0.67) 0.2(0.33)

                  0.133,

X Xf f

f G G f B B


  

 



 

 





 

3
and (2 0,1) (2 ) ( 0,1)

                  (2 ) ( 0,1) (2 ) ( 0,1)

                  0.1(0.67) 0.2(0.33)

                  0.133.

X Xf f

f G G f B B


  

 



 

 





 

(b) 

The Bayesian estimate of the expected claim size in year 2. 

We have ( 8) 0.80 and ( 2) 0.20       , and # of claims (claim size ) is 5 in year 1. 

2 1 1

1 1

1

1

1 1

5 8

5 8 5 2

( 5) ( 5)

                      = ( =8) ( 8 5) ( =2) ( 2 5)

Pr( 5 8) ( 8)
( 8 5)

Pr( 5 8) ( 8) Pr( 5 2) ( 2)

(1 8) (0.8)
                          =

(1 8) (0.8) (1 2) (

E X X E X

X X

X
X

X X

e

e e

   




 



 

   

        

    
   

          


0.867035

0.2)


 

1

1

1 1

5 2

5 8 5 2

Pr( 5 2) ( 2)
Similarly, ( 2 5)

Pr( 5 8) ( 8) Pr( 5 2) ( 2)

(1 2) (0.2)
                          = 0.132965

(1 8) (0.8) (1 2) (0.2)

X
X

X X

e

e e




 



 

    
   

          




 

2 1( 5) 8 0.867035 2 0.132965

                          =7.2022

E X X     
 

The Bühlmann estimate of the expected claim size in year 2. 
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To determine the Bühlmann credibility estimate, we should find the following quantities. 

[ ( )]

    8(0.80) (2)(0.20) 6.8,

E  

  
 

2 2 2

var[ ( )]

    8 (0.8) 2 (0.2) - 6.8 5.76,

a  

  
 

2 2

[ ( )]

    = ( ) ( )

  8 0.8 2 0.2 52,

v E v

v


  

 

    

  

Note that for 2exp( ) the mean ( )  and var( ) X E X X        

52
   = =9.02778, 

5.76

v
k
a



 

1
    

1 9.02778

 Z 0.099723.

n
Z
n k







 

 

The Bühlmann estimates is  

2( 100) (1 )

                 0.099723 5 (1 0.099723) 6.8

                 6.6205.

cE X P ZX Z    

    



 

Q5: [5] 

First Method (shifted approach) 

The loss amounts after the deductible is applied are: 3, 6, 7, 8, 10, 12 



11 
 

6

6

6

1

1/ (3 6 7 8 10 12)1

46/1

The likelihood function is
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The loglikelihood function is

46
( ) 6lnl  


  

 

^
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To get ,  set ( ) 0
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        7.6667

l
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Second Method (un-shifted approach) 

The loss amounts before the deductible is applied are: 10, 13, 14, 15, 17, 19 

6

6

6

1

6

1/ (10 13 14 15 17 19)1

6
7/

46/1

The likelihood function is

( )
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1 (7 )
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The loglikelihood function is

46
( ) 6lnl  
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^ 46
( ) 6 ln 7.6667

7.6667

         18.2213

l    
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