

Ibrahim Almohanna, 2019

Photogrammetry

Photogrammetry defined as the science and technique of making measurements on photographs;

Photographs are classified as:

Figure 1. Flight path for stereo shots

Figure 2. Aerial images scanned with 2000dpi

Parts of A Single Lens Frame Camera

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the Lorem has survived not only five centuries, but also the dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a

Figure 27-2 Principal components of a single lens frame aerial c ${ }_{3}$ a.

Photo Scale

- For a flat ground, if flying height is H and focal length is f ,
- photo scale $=\mathrm{f} / \mathrm{H}$
- Example: A photograph taken from height 3000 m using a camera of focal length 150.00 mm , Compute the photo scale:
- Photo scale $=(150) \mathrm{mm} /(3000) \mathrm{m}=150 / 3000000=1 / 10000$
- Scale at point $A=f /\left(H-h_{A}\right)$.
- Example: camera focal length $=100 \mathrm{~mm}$, flying height $=2400 \mathrm{~m}$, height of point $A=400 \mathrm{~m}$. Compute scale at point A :
- Scale at point $A=100 /[(2400-400) \times 1000]=100 / 2000000=$ 1/20000
- Ground Distance $A B=$ photo distance $a b$ (measured) x average photo scale no.

Figure 27-7 Scale of a vertical photograph.

Ground Coordinates from Image Coordinates

- An image coordinate system is chosen such that x-axis is along flight direction, the y-axis is perpendicular to it at the principal point. A ground coordinate system, $X-Y$, is to be parallel to the image coordinate system.

Ground coordinates of point A:
$\mathrm{X}_{\mathrm{A}}=\mathrm{x}_{\mathrm{a}}{ }^{*}\left(\mathrm{H}-\mathrm{h}_{\mathrm{A}}\right) / f$ and $\mathrm{Y}_{\mathrm{A}}=\mathrm{y}_{\mathrm{a}}{ }^{*}\left(\mathrm{H}-\mathrm{h}_{\mathrm{A}}\right) / \mathrm{f}$
Ground coordinates of point B :

$$
X_{B}=x_{b}^{*}\left(H-h_{B}\right) / f \text { and } Y_{B}=y_{b}^{*}\left(H-h_{B}\right) / f
$$

Ground distance $A B=\left[(X A-X B)^{2}+(Y A-Y B)^{2}\right]^{1 / 2}$

Figure 27-8 Ground coordinates from a vertical photograph.

Coordinates Example

- Example:
- The images a and b of ground points A and B have photo coordinates: $\mathrm{a}(-30,-60) \mathrm{mm}$ and $\mathrm{b}(40,80) \mathrm{mm}$. Elevations of A and B above MSL are 200.00 m and 150.00 m , respectively. Flying height above MSL=2000.00m, and camera focal length $=150.00 \mathrm{~mm}$. Compute ground coordinates of points A and B and horizontal distance between therm.
- Solution:
- $\mathrm{X}_{\mathrm{A}}=\mathrm{x}_{\mathrm{a}}{ }^{*}\left(\mathrm{H}-\mathrm{h}_{\mathrm{A}}\right) / \mathrm{f}=(-30)^{*}(2000.00-200.00) / 150=-360.00 \mathrm{~m}$.
- $Y_{A}=-720.00 m$,
- $X_{B}=X_{b}{ }^{*}\left(H-h_{B}\right) / f=(40)^{*}(2000.00-150.00) / 150=760.00 \mathrm{~m}$.
- $Y B=1520.00 \mathrm{~m}$.
- Ground Distance $\mathrm{AB}=[(-360-760) 2+(-720-1520) 2] 1 / 2=$

Figure 27-8 Ground coordinates from a vertical photograph.

Relief Displacement

- Relief Displacement is a radial displacement from photo principal point caused by difference in ground
elevations and perspective projection of image.

$$
\mathrm{dr}=\mathrm{rt}-\mathrm{rb}
$$

- Where:
- $\quad \mathrm{dr}$ is the length of the displaced object on the
photo (relief displacement)
- $\quad r t$ is the radial distance from the nadir to the

top point.
- rb is radial distance from nadir to base of

Relief Displacement

- Relief Displacement is a radial displacement from photo principal point caused by difference in ground
elevations and perspective projection of image.

$$
\mathrm{dr}=\mathrm{rt}-\mathrm{rb}
$$

- Where:
- $\quad d r$ is the length of the displaced object on the

photo (relief displacement)

- $\quad r t$ is the radial distance from the nadir to the
top point.
- rb is radial distance from nadir to base of

Top View

(a) Map (orthographic projection) Constant scale No relief displacement

Side View

(b) Photo (perspective projection)

Varied scale
Relief displacement

Object height

\author{

- Object height, $h=d r$. H / rt
}
- $d r$ and r should have same units (mm). If H is given in
m the object height will be found in m too.

Object height

- Example:

- Assume that the flying height of the aircraft was $1,500 \mathrm{~m}$ above average ground surface; estimate the height of

TV Tower using the relief displacement method, given:
relief displacement=2.0mm, the radial distance from top
of image to principal point $=80.0 \mathrm{~mm}$

- TV Tower height $=2.0 \times 1500 / 80.0=37.5 \mathrm{~m}$

Accuracy

- The accuracy in photogrammetric surveys depends on:
- the scale and type of photography,
the photo measuring instruments used,
- the skill of the operator
the density of ground control,
- the amount of relief.

