
Method Overloading1

Java Programming: From Problem Analysis to Program Design, 4e

Overloading Basics

 A method’s formal parameter list is the number and

types of its parameters

 A method's name and formal parameter list is called the

method’s signature

 Two methods are said to have different formal

parameter lists if they have:

 a different number of parameters,

OR

 the data type of the formal parameters, in the order listed, differ

in at least one position

2

Overloading Basics

 When two or more methods have same name

within the same class they are said to be

overloaded:
 they must have different signatures though,

 since the name is the same it means the formal parameter list

must be different.

 Java distinguishes these methods by number

and types of parameters
 If it cannot match a call with a definition, it attempts to do type

conversions

3

If a method name is overloaded, then the formal parameter list determines
which method to execute when called.

Method Formal Parameter List

public void methodOne (int x)

public void methodTwo (int x, double y)

public void methodThree(double x, int y)

public int methodFour (char ch, int x, double y)

public int methodFive (char ch, int x, String name)

 These methods all have different formal

parameter lists

4

Method Formal Parameter List

public void methodOne (int)

public void methodTwo (int , double)

public void methodThree(double , int)

public int methodFour (char , int , double)

public int methodFive (char , int , String)

 These methods all have different formal

parameter lists

 The names of the parameters are

irrelevant, only the type is relevant

5

Method Formal Parameter List

public void methodSix (int x, double y, char ch)

public void methodSeven(int one, double u, char firstCh)

 The methods methodSix and methodSeven both

have three formal parameters and the data type of

the corresponding parameters is the same

 These methods all have the same formal parameter

lists

6

Method Formal Parameter List

public void methodSix (int , double , char)

public void methodSeven(int , double , char)

 The methods methodSix and methodSeven both

have three formal parameters and the data type of

the corresponding parameters is the same

 These methods all have the same formal parameter

lists

 Remember: parameter name is irrelevant

7

Method Overloading

 Method overloading: creating one or more

methods with the same name and different
formal parameter lists within a class,

 The signature of a method:

 Consists of the method name and its formal parameter list

 It does not include the return type of the method

 Two methods have different signatures if they

have:

 either different names or different formal parameter lists

8

the signature does NOT

include the return type

Method Overloading (continued)

 The following method headings correctly
overload the method methodXYZ:

public void methodXYZ()

public void methodXYZ(int x, double y)

public void methodXYZ(double one, int y)

public void methodXYZ(int x, double y, char ch)

 What about these? Why?
public int methodXYZ(int xx, double yy)

public char methodXYZ(double one, int y)

public char methodXYZ(char one, char y)

9

Method Overloading (continued)

public void methodABC(int x, double y)

public int methodABC(int x, double y)

 Both these method headings have the same

name and same formal parameter list

 These method headings are incorrect for the
purpose of overloading the method methodABC

 The compiler will generate a syntax error

 Notice that the return types of these method headings

are different

10

Overloading and Type Conversion

 Remember the compiler attempts to overload

before it does type conversion

 for example: if you have

public void over(double x)

public void over(byte x)

public void over(long y)

 calling:

over(3)

 will have the complier first look for an overloaded method

over that takes an integer, if it does not find it, it will try to

do conversion, here it converts to long

byte short int long float double

Overloading and Type Conversion

 Overloading and automatic type conversion can

conflict

 for example: if you have

public void over(double x, double y) // d d

public void over(double x, int y) // d int

public void over(int x, double y) // int d

 calling:

over(3,3);

 will have the complier first look for an overloaded method

over that takes two integers, if it does not find it, it will try to

do conversion

 here it gets confusing ➔ ambiguous ➔ causes an error

because the 2nd and the 3rd version could be matched.

Overloading and Return Type

 You must not overload a method where

the only difference is the type of value

returned

 return value is NOT part of the signature

EXAMPLES

➢ Recall the pre-defined method abs:
➢ In fact, it is written four times with different formal parameter lists:

▪ public static int abs (int x)
▪ public static long abs (long x)
▪ public static double abs (double x)
▪ public static float abs (float x)

➢ In other words, abs is overloaded.

5.1 int/long/double/float abs(int/long/double/float x)

num1 = abs(num2); //valid? which method is called?

num2 = abs(num1); //valid? Which method is called?

5

6

int num1 = -10;

double num2 = 50.23;

num1 = abs(num1); //The first method is called (int)

num2 = abs(num2); //The third method is called (double)

1

2

3

4

The 3rd would be called (takes a

double), result is a double,

Can NOT be stored in an int

The 1st is called (takes an int),

result is an int,

CAN be stored in a double

5. EXAMPLES

public static int larger (int num1, int num2) {

if (num1 > num2)

return num1;

return num2; } // end of larger (int, int)

public static char larger (char ch1, char ch2) {

if (ch1 > ch2)

return ch1;

return ch2; } // end of larger (ch, ch)

public static double larger (double num1, double num2)

{

if (num1 > num2)

return num1;

return num2;

} // end of larger (double, double)

17

18

19

20

21

22

23

24

25

26

27

28

29

30

The method larger is overloaded with different parameter lists.

5. EXAMPLES

public static int larger (int num1, int num2, int num3) {

int max = num1;

if (num2 > max)

max = num2;

if (num3 > max)

max = num3;

return max;

} // end of larger (int num1, int num2, int num3)

} //end class

31

32

32

33

34

35

36

37

➢ We can even define more methods with three or more parameters:

➢ Similarly, more parameters may be defined with more overloaded
methods.

➢ However, a method should be defined for every different formal
parameter list (different type and/or different number).

➢ Java provides the concept of variable length parameter list to simplify
rewriting the method multiple times in the above example…

EXAMPLES

public class overloading

{ public static void main (String[] args)

{ int resultInt2, resultInt3;

char resultChar;

double resultDouble;

resultInt2 = larger (5, 9); // calls line 17

resultInt3 = larger (40, -20, 3); // calls line 31

resultChar = larger (‘A’, ‘Z’); // calls line 21

resultDouble = larger (55.5, 30.2); //calls line 25

System.out.printf (“resultInt2 = %d%n”, resultInt2);

System.out.printf (“resultInt3 = %d%n”, resultInt3);

System.out.printf (“resultChar = %c%n”, resultChar);

System.out.printf (“resultDouble = %f%n”,

resultDouble);

} //end main

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Consider this main method calling larger with different actual parameters.

