
Identifier Scope Within a Class1

Java Programming: From Problem Analysis to Program Design, 4e

Definitions & Facts

 Local identifier:

 identifier declared within a method or block,

 it is visible only within that method or block.

2

Definitions & Facts

 Block:

 a set of statements enclosed within braces

 the body of a loop or an if statement also forms a

block

 Nesting:

 Blocks can be nested:

◼ one block can contain other blocks

 Methods can NOT be nested:

◼ you cannot include the definition of one method in the

body of another method.

3

Declaration of an identifier

 Within a class (to be accessible by the whole class):

 it can occur anywhere outside of every method

definition (and every block), even if it is in the

middle or at the end of the class.

 Within a method/block:

 it must occur before it can be used

 when blocks are nested:

◼ an identifier used to name a variable in the outer block

cannot be used to name any other variable in an inner

block of the same method

◼ (see example - illegal)

4

Example - illegal

public static void illegalIdentifierDeclaration()

{

int x;

//block

{

double x; //illegal declaration,

//x is already declared

...

}

}

5

Scope Rules within a Method/Block

 An identifier declared within a

method/block is accessible:

 Only within the block from the point at which it is

declared until the end of the block.

 By inner blocks; blocks that are nested within that

outer block.

 An identifier declared within a

method/block overrides any identifier with

the same name declared outside the

method. (see override example)

6

Scope Rules within a Class

 Identifiers declared within a class, and

outside every method/block:

 These identifiers can be static or non-static.

 Static identifiers are accessible by all methods

provided that the methods do not have any other

identifier with the same name. (see override example)

 Non-static identifiers are accessible only by non-

static methods provided that the methods do not

have any other identifier with the same name.

7

Example - override

static int x = 0;

int y = 0;

public static void overrideIdentifierDeclaration()

{ x++; // legal, increments static x

double x; // legal declaration,

// method will NOW see local x (double)

// method will NOT see global static x anymore

y ++; // illegal because y is non-static,

// but the method is static

}

public void nonStaticMethodScopeExample()

{ x++; // legal, increments global static x

y++; // legal, because this is a non-static method

}

8

Scope Rules (continued)

 Suppose X is an identifier declared within a

class and outside of every method’s definition

(block)

 If X is declared without the reserved word static

(such as a named constant or a method name), then it

cannot be accessed in a static method

 If X is declared with the reserved word static (such

as a named constant or a method name), then it can

be accessed within any method (block), provided the

method (block) does not have any other identifier

named X

9

Scope Rules (continued) Example 7-11
public class ScopeRules

{

static final double rate = 10.50;

static int z;

static double t;

public static void main(String[] args)

{

int num;

double x, z;

char ch;

//...

}

public static void one(int x, char y)

{

//...

}

public static int w;

public static void two(int one, int z)

{

char ch;

int a;

{ // block three

int x = 12;

}

//...

}

}

ONE

rate

z

t

main

one

x

y

w

two

TWO

rate

z

t

main

one

w

two

one

z

ch

a

THREE

rate

z

t

main

one

w

two

one

z

ch

a

x

MAIN

rate

z

t

main

args

num

x

z

ch

one

w

two

Scope Rules: Demonstrated

Java Programming: From Problem Analysis to Program Design, 4e

11

Scope Rules: Demonstrated (continued)

Java Programming: From Problem Analysis to Program Design, 4e

12

Scope Rules – Scanner Example

Java Programming: From Problem Analysis to Program Design, 4e

public class ScopeRules {

static Scanner read=new Scanner (System.in);

public static void main(String[] args){

int number = read.nextInt();

//… }

}

public class ScopeRules {

public static void main(String[] args){

Scanner read=new Scanner (System.in);

int number = read.nextInt();

//… }

}

Can be accessed from

any method (static &

non-static) including

main

‘Local’ accessed

from main only

public class ScopeRules {

Scanner read=new Scanner (System.in);

public static void main(String[] args){

int number = read.nextInt();

//… }

}

Can be accessed

from non-static

method only

