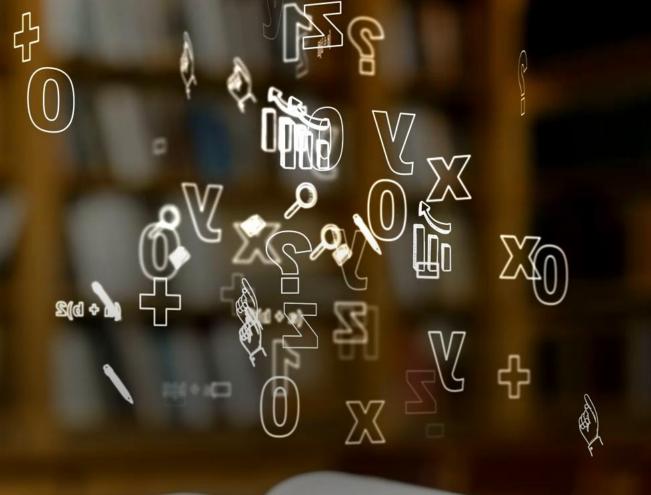
Chapter 18

Learning from Examples



The Importance of Learning

- An agent is learning if it improves its performance upon observing the world.
- Why is it important to learn?
 - The designer can not anticipate the all the situations in which the agent will be, e.g., a robot navigating a maze.
 - The designer can not anticipate all changes over time, e.g., stock market.
 - Sometimes designers have no idea how to program the solution themselves, e.g., facial recognition.

Types of Learning

- In order to learn, the agent needs to observe the world and maybe have feedback.
- The different types of feedback determine the different types of learning:
 - Supervised learning
 - Unsupervised learning
 - Semi-supervised learning
 - Reinforcement learning

Types of Learning

- Supervised learning: The agent observes a set of input-output examples (labeled examples) and learns a map from inputs to outputs.
 - Classification: output is discrete (e.g., spam email)
 - Regression: output is real-valued (e.g., stock market)
- Unsupervised learning: No explicit feedback is given, only the inputs (unlabeled examples). The agent learns patterns in the input.
 - Clustering: grouping data into K groups. (e.g. clustering images of fish into different species)

Supervised Learning

• Given a training set of *m* example input-output pairs:

 $(x_1, y_1), (x_2, y_2), \dots (x_m, y_m),$

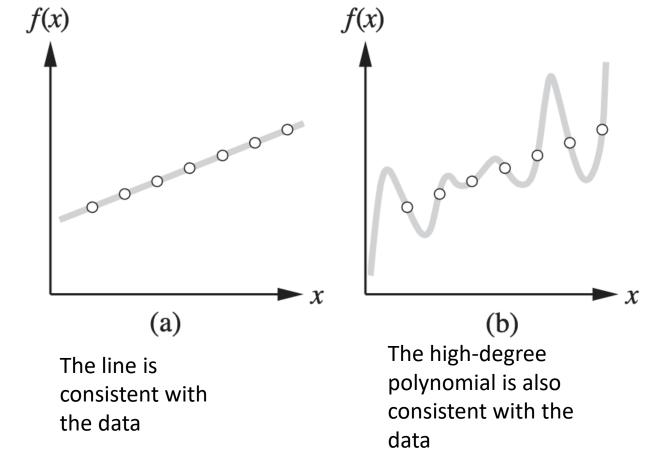
where, $y_j = f(x_j)$, where f is unknown function, the goal is to find a function h that approximates f.

- The function *h* is called a **hypothesis**.
- How to measure the accuracy of *h*?
 - We give a **test set** of examples, which is different from the training set.
 - The hypothesis **generalizes** well if it correctly predicts the output for the test set.

How to Choose the Hypothesis ?

• First, select the hypothesis space: in this case, the set of polynomials.

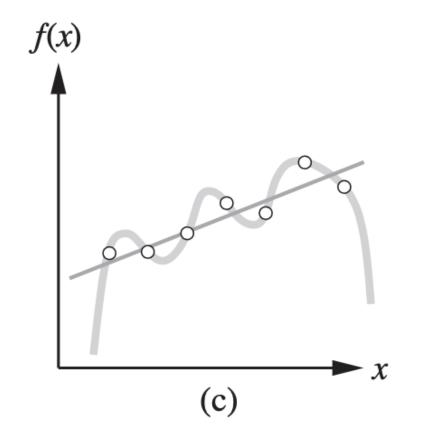
 Ockham's razor: Choose the simplest hypothesis which is consistent with the data.



How to Choose the Hypothesis ?

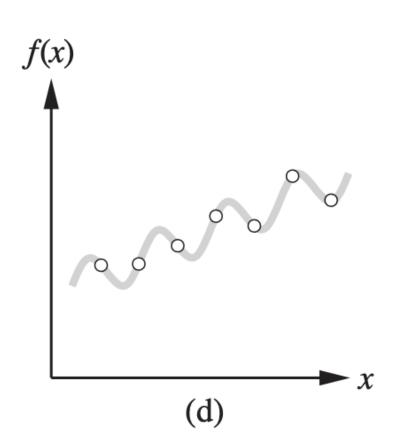
Do we choose the line or the 6degree polynomial?

- The line detects a pattern and will **generalize** well.
- The 6-degree polynomial does not detect any pattern.
- Choose the hypothesis that generalizes well, even if it is not consistent with the data.



How to Choose the Hypothesis ?

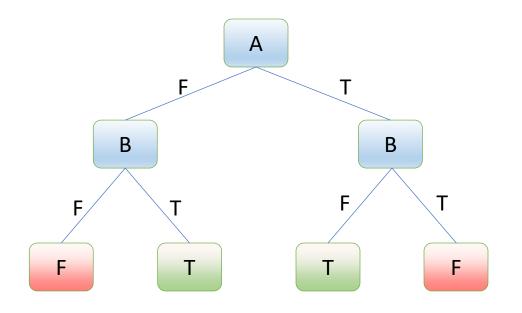
- ax + b + csin(x) is consistent with the data → The choice of the hypothesis space is important.
- The learning problem is **realizable** if the hypothesis space contains the true function (we can not know this of course, because *f* is unknown).
- Complex hypothesis space → better hypothesis but complex search.
- Simple hypothesis space → simple search, but less good hypothesis.



- A decision tree represents a function *f* that has multiple inputs but a single output.
 - We focus on discrete input and Boolean output (Boolean classification)
- A decision tree reaches the decision by a set of tests on the **attributes** (the inputs).
- The internal nodes are test nodes
- The leaf nodes are the decision nodes

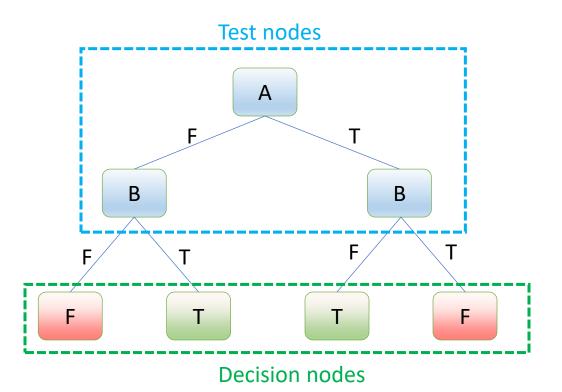
Simple Example

А	В	A xor B
True	True	False
True	False	True
False	True	True
False	False	False



Simple Example

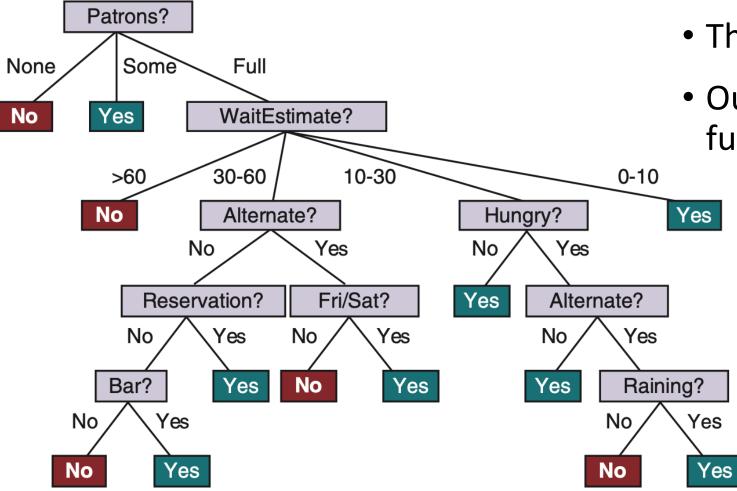
А	В	A xor B
True	True	False
True	False	True
False	True	True
False	False	False



A more complex example: deciding to wait at a restaurant

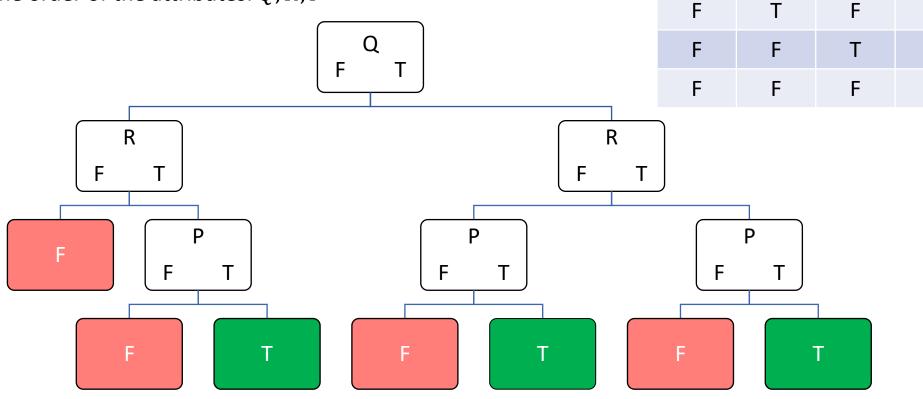
- The attributes :
 - **1. Alternate**: whether there is a suitable alternative restaurant nearby.
 - 2. Bar: whether the restaurant has a comfortable bar area to wait in.
 - **3.** Fri I Sat: true on Fridays and Saturdays.
 - 4. Hungry: whether we are hungry.
 - 5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
 - 6. Price: the restaurant's price range (\$, \$\$, \$\$\$).
 - 7. Raining: whether it is raining outside.
 - 8. Reservation: whether we made a reservation.
 - **9. Type**: the kind of restaurant (French, Italian, Thai, or burger).
 - **10.** WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, or >60).

Example	Input Attributes						Output				
I	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
x ₁	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = No$
X 3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
x ₆	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
X 7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
X 8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
x ₁₀	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	$y_{10} = No$
x ₁₁	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Yes$



- This is the real function.
- Our goal is to learn this function from examples.

A decision tree for the function: $P \land (Q \lor R)$. The order of the attributes: Q, R, P



 $p \land (q \lor r)$

Т

Т

Т

F

F

F

F

 $q \lor r$

Т

Т

Т

F

Т

Т

Т

F

 γ

Т

F

Т

F

Т

p

Т

Т

Т

Т

F

q

Т

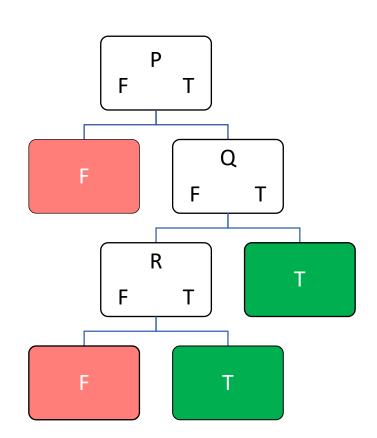
Т

F

F

Т

A decision tree for the function: $P \land (Q \lor R)$. The order of the attributes: P, Q, R



p	q	r	$q \lor r$	$p \land (q \lor r)$
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	т	Т
Т	F	F	F	F
F	Т	Т	т	F
F	Т	F	т	F
F	F	Т	Т	F
F	F	F	F	F

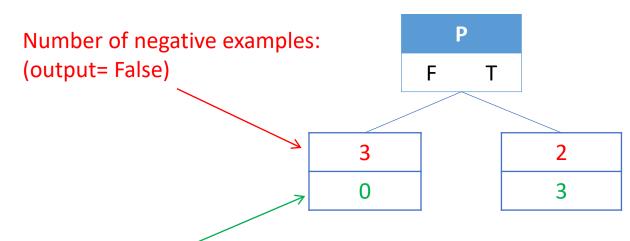
Smaller number of nodes \rightarrow The order is important

- Training set for $P \land (Q \lor R)$
- Notice that some combinations of inputs do not appear

Example	Р	Q	R	Output
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	0	1
8	1	1	0	0

Noise

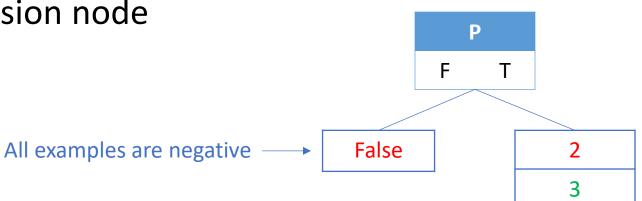
 Choose the most important attribute (how?): in this case it is *P*, and split the examples.



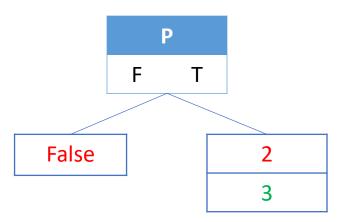
Example	Р	Q	R	Output
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	0	1
8	1	1	0	0

Number of positive examples: (output= True)

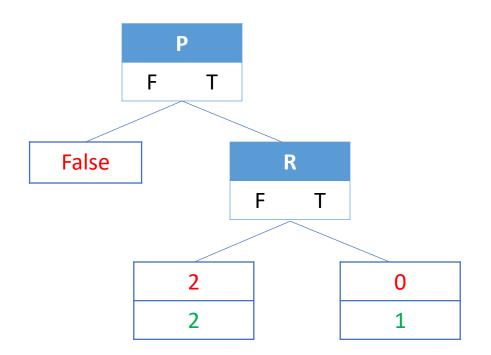
 When P = False all the examples have the same classification (all false) → We stop and make a decision node with the value False.

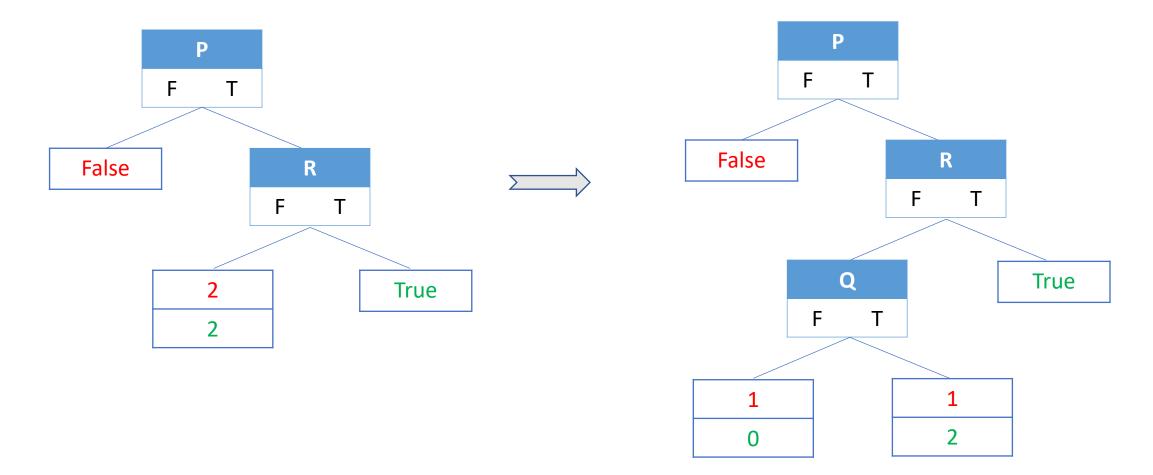


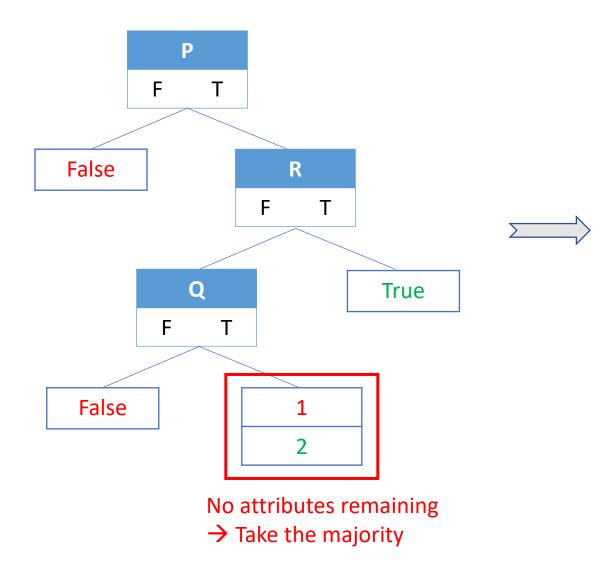
- For the node P = True, we have both positive and negative examples, so we choose an attribute (the most important: how?)
- In this case it is R

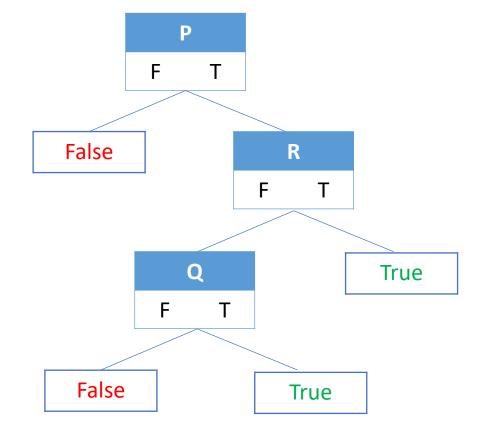


- For the node R = True, all the examples have the same classification (all true) → We stop and make a decision node with the value True.
- For the node R = False, we have both positive and negative examples, so we choose an attribute: Q









We obtained the true function in this case , but this will not always happen

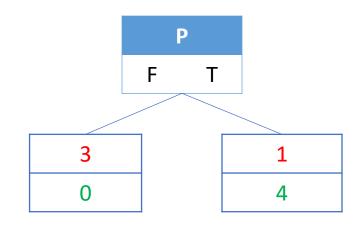
$P \land (Q \lor R)$ Example Ρ Q R

Training set for $P \land (Q \lor R)$

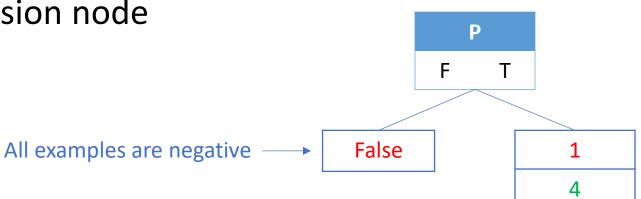
Noise

Notice that some combinations of inputs do not appear

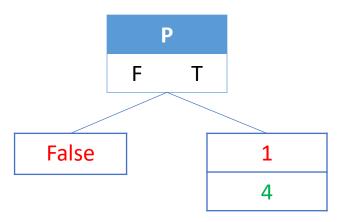
 Choose the most important attribute (how?): in this case it is P, and split the examples.



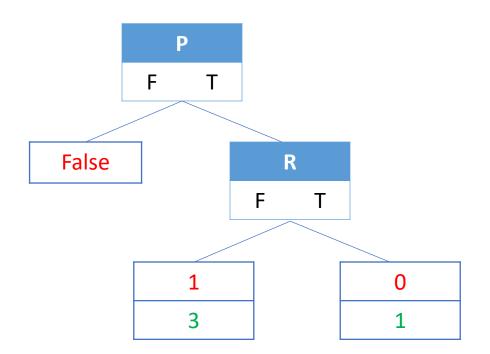
 When P = False all the examples have the same classification (all false) → We stop and make a decision node with the value False.

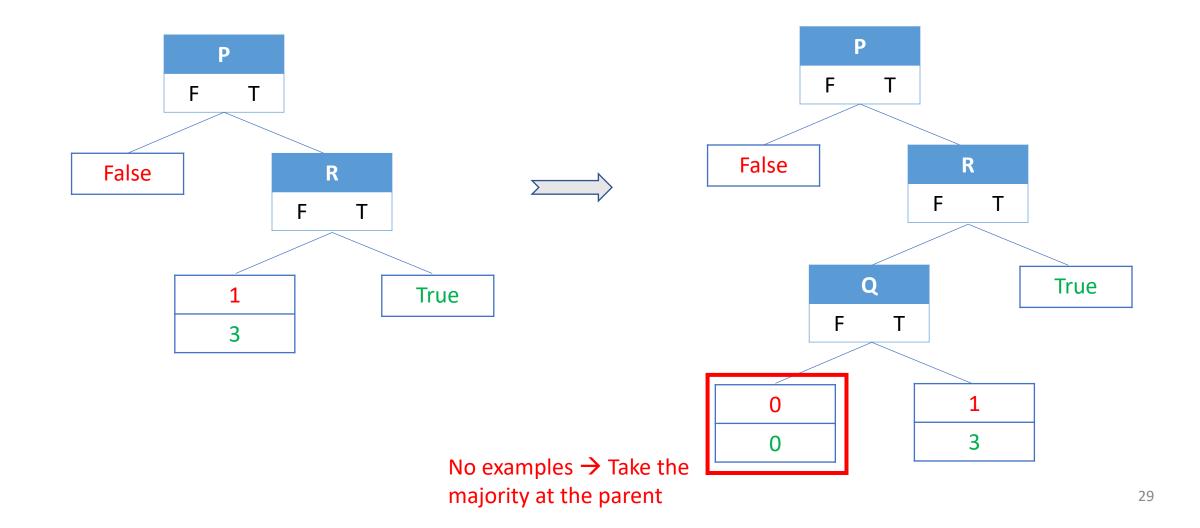


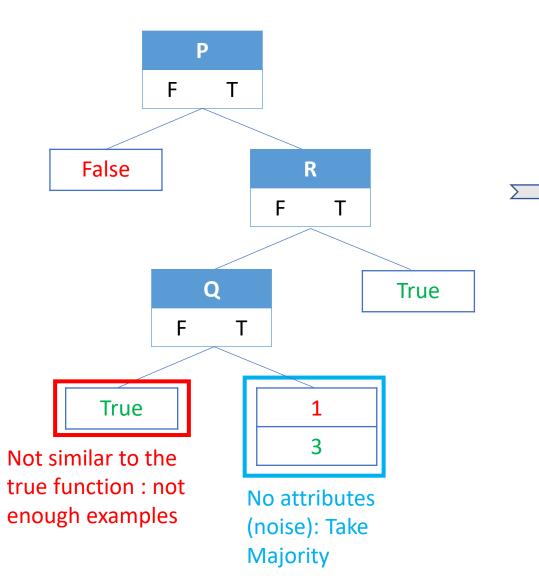
- For the node P = True, we have both positive and negative examples, so we choose an attribute (the most important: how?)
- In this case it is R

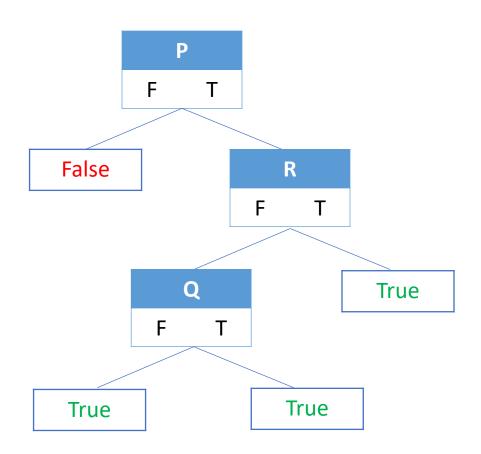


- For the node R = True, all the examples have the same classification (all true) → We stop and make a decision node with the value True.
- For the node R = False, we have both positive and negative examples, so we choose an attribute: Q







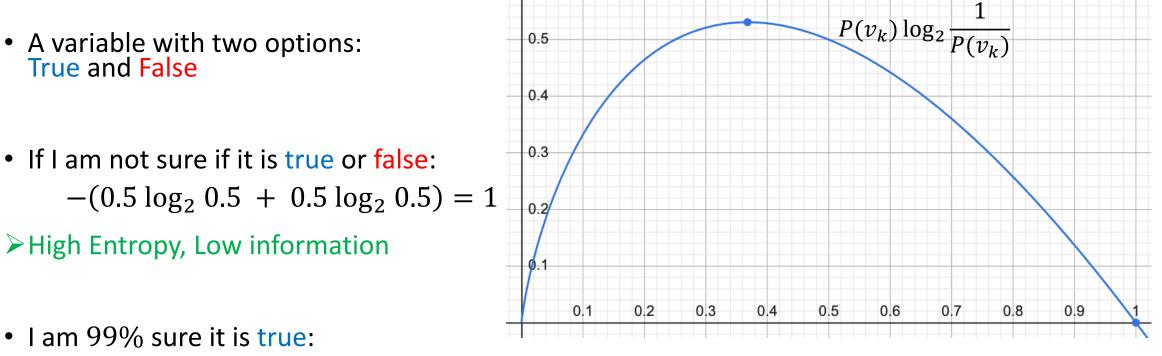


The resulting tree is different from the true one

- At the beginning, we have some positive (*p*) and negative (*n*) examples
- We use the notion of information gain, which is defined in terms of entropy:
 - Entropy is a measure of the uncertainty of a random variable
 - More information \Rightarrow less entropy
- In general, the entropy of a random variable V with values v_k , each with probability $P(v_k)$, is defined as:

$$H(V) = \sum_{k} P(v_{k}) \log_{2} \frac{1}{P(v_{k})} = -\sum_{k} P(v_{k}) \log_{2} P(v_{k})$$

What does the function look like?



 $-(0.99 \log_2 0.99 + 0.01 \log_2 0.01) \approx 0.08$

► Low Entropy, High information

Entropy

$$H(V) = \sum_{k} P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_{k} P(v_k) \log_2 P(v_k)$$

• Entropy of a fair coin flip is 1 bit:

 $H(Fair) = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = 1 bit$

- If the coin is loaded to give 99% heads: $H(Loaded) = -(0.99 \log_2 0.99 + 0.01 \log_2 0.01) \approx 0.08 bits$
- We define B(q) as the entropy of a Boolean random variable that is true with probability q:

$$B(q) = -(q \log_2 q + (1-q) \log_2 (1-q))$$

• If a training set contains *p* positive examples and *n* negative examples, then the entropy of the goal attribute on the whole set is

$$H(Goal) = B\left(\frac{p}{p+n}\right)$$

- Choose the attribute that gives the largest information possible about the function
 - We choose the attribute which if tested gives the maximum <u>reduction</u> in entropy (maximum gain in information).

- Each attribute has *k* possible values
 - For an RGB attribute, k = 3, Red or Green or Blue
 - For the function $P \land (Q \lor R), k = 2$
- For each value k, we have a set of positive (pk) and negative (nk) examples
 - For attribute P, k = 2, 0 and 1
 - $P = 0: p_0 = 0, n_0 = 3$
 - $P = 1: p_1 = 3, n_1 = 2$

Example	Р	Q	R	Output
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	0	1
8	1	1	0	0

• The entropy for each branch is:

$$B\left(\frac{p_k}{p_k + n_k}\right)$$

• 0:
$$p_0 = 0, n_0 = 3$$

•
$$B\left(\frac{p_0}{p_0+n_0}\right) = B\left(\frac{0}{3}\right)$$

• 1:
$$p_1 = 3, n_1 = 2$$

•
$$B\left(\frac{p_1}{p_1+n_1}\right) = B\left(\frac{3}{5}\right)$$

Example	Р	Q	R	Output
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	0	1
8	1	1	0	0

- But the expected entropy depends on the branch
- So, we also need the probability of going down either branch:

$$prob = \frac{p_k + n_k}{p + n}$$

• Branch 0:
$$\frac{p_0 + n_0}{p + n} = \frac{3}{8}$$

• Branch 1: $\frac{p_1 + n_1}{p + n} = \frac{5}{8}$

Example	Р	Q	R	Output
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	0	1
8	1	1	0	0

• The expected entropy remaining after testing an attribute A is:

Remainder(A) =
$$\sum_{k=1}^{d} \frac{p_k + n_k}{p + n} B\left(\frac{p_k}{p_k + n_k}\right)$$

• The **information gain** from the attribute test on *A* is the expected reduction in entropy:

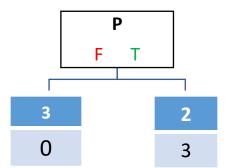
$$Gain(A) = B\left(\frac{p}{p+n}\right) - Remainder(A)$$

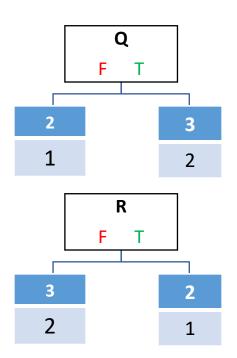
Choosing Attributes: Example

$$Remainder(A) = \sum_{k=1}^{d} \frac{p_k + n_k}{p + n} B\left(\frac{p_k}{p_k + n_k}\right)$$

- Remainder(P) = $\left(\frac{0+3}{8}\right) * B\left(\frac{0}{3}\right) + \left(\frac{3+2}{8}\right) * B\left(\frac{3}{5}\right) = 0.6$
- Remainder(Q) = $\left(\frac{1+2}{8}\right) * B\left(\frac{1}{3}\right) + \left(\frac{2+3}{8}\right) * B\left(\frac{2}{5}\right) = 0.95$
- Remainder(R) = $\left(\frac{2+3}{8}\right) * B\left(\frac{2}{5}\right) + \left(\frac{1+2}{8}\right) * B\left(\frac{1}{3}\right) = 0.95$

We choose P



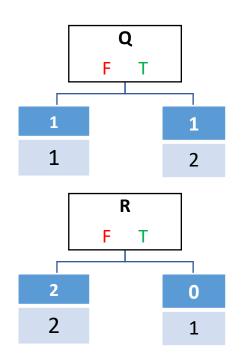


Choosing Attributes: Example

$$Remainder(A) = \sum_{k=1}^{d} \frac{p_k + n_k}{p + n} B\left(\frac{p_k}{p_k + n_k}\right)$$

- Remainder(Q) = $\left(\frac{1+1}{5}\right) * B\left(\frac{1}{2}\right) + \left(\frac{2+1}{5}\right) * B\left(\frac{2}{3}\right) = 0.95$
- Remainder(R) = $\left(\frac{2+2}{5}\right) * B\left(\frac{2}{4}\right) + \left(\frac{1+0}{5}\right) * B\left(\frac{1}{1}\right) = 0.8$

➤ We choose R



Greedy algorithm for learning decision trees

Recursive Algorithm:

- 1. If the remaining **examples** are **all** positive (or **all** negative), then we are done: we can answer Yes or No.
- 2. If there are **some** positive and **some** negative examples, then choose the best attribute to split them.
- 3. If there are **no** examples left, it means that no example has been observed for this combination, and we return a **default value: the plurality classification** of all the examples that were used in constructing the node's parent.
 - take the most frequent class in the parent node and return that as your prediction
- 4. If there are **no attributes** left, but both positive and negative examples, it means that these examples have exactly the same description, but different classifications. We return a **default value:** the **plurality classification of the remaining examples**.

Learning Decision Trees (ID3)

function DECISION-TREE-LEARNING(*examples*, *attributes*, *parent_examples*) **returns** a tree

if examples is empty **then return** PLURALITY-VALUE(*parent_examples*) **else if** all *examples* have the same classification **then return** the classification **else if** attributes is empty **then return** PLURALITY-VALUE(*examples*) **else**

```
A \leftarrow \operatorname{argmax}_{a \in attributes} IMPORTANCE(a, examples)

tree \leftarrow a new decision tree with root test A

for each value v_k of A do

exs \leftarrow \{e : e \in examples \text{ and } e.A = v_k\}

subtree \leftarrow DECISION-TREE-LEARNING(exs, attributes - A, examples)

add a branch to tree with label (A = v_k) and subtree subtree

return tree
```