

Lecture9 Complete Blood Count (CBC)

Mohrah Alalshaikh Shaden Alharbi Ghada Alotaibi

Automated Blood Counter Instruments

• Complete blood counts (CBC) is one of the most frequently requested tests in clinical hematology labs (routine test).

Automated Blood Counter

Automated Blood Counter

Staining Cassette Each staining cassette holds single slide for staining, this eliminates the problem of stain evaporation and these cassettes could be cleaned automatically without any manual interventions.

Cell Analyzer

Types of Cell Analyzers:

- a. Semi-automated
 - Some steps are carried out manually (e.g., dilution of blood).
 - Measures only a <u>few</u> parameters.
- b. Fully automated
 - It does not require manual steps to be performed before running the sample.
 - Measure <u>multiple</u> parameters.
- Results obtained from hematological cell analyzers instruments are collectively known as **complete blood counts (CBCs)**.
- Some cell counters can process 120-150 samples per hour.

Cell Analyzer

- Type of sample: Whole EDTA blood sample.
- Criteria for sample rejection: Clotted sample, Insufficient sample, Improper tube, hemolysis, lipemia, old sample, no patient information.
- Number of variables: patient demographic data.

Parameters of Automated Blood Counter

- 8-20 parameters, including:
- 1. Total WBC count.
- 2. WBC DIFF count.
- 3. Red blood cell (RBC) count.
- 4. Platelet (PLT) count.
- 5. Hb estimation.
- 6. Mean cell volume (MCV).
- 7. Mean cell Hb (MCH).

- Mean cell Hb concentration (MCHC).
- 9. Hematocrit (Hct).
- 10. Red cell distribution width (RDW).
- 11. PLT volume (MPV).

CBC results

Coulter LH 750								
Date: 5/26 Time: 11:2	Date: 5/26/2005 Fime: 11:28:26		e ID: e Type:	4004_ CD A NO Read	Cass / Pos: Listname:	000904 37H5QDD4	Operator ID: Instrument:	LABADMIN LH1N
WBC NE % LY % MO % EO % NRBC % NE # LY # MO # EO # BA # NRBC #	8.8 65.7 25.7 7.9 0.5 0.2 0.0 5.8 2.3 0.7 0.0 0.0 0.0	Flags	10 ³ /uL % % % % 10 ³ /μL 10 ³ /μL 10 ³ /μL 10 ³ /μL 10 ³ /μL		A	Histogram	Suspect	Definitive
RBC HGB HCT MCV MCH MCHC RDW	4.24 12.4 37.3 88.0 29.2 33.1 14.7	LLL	10 ⁶ /µL g/dL % fL pg g/dL %			Histogram		
PLT MPV	344 7.2		10 ³ /μL fL			istogram		

Measurement in Automatic CBC Devices

Principles of the Measurement in Automatic Blood Count Devices:

- I. Impedance counting (coulter principle)
- II. Flow-cytometry
- III. Light scattering
- IV. Photometry

• More than one principle is implemented in one analyzer instrument.

I. Impedance Method in Blood Count

Principle:

- Whole blood is passed between two electrodes through a narrow aperture.
- Allowing only that passage of one cell at a time.
- The impedance (electrical current) changes as a cell passes through.
- Changes in electrical current are sensed by the electrode.
- The change in electrical current is proportional to cell volume, resulting in a cell count and measure of volume.
- Sources of error: sample clumping of two cells passing at the same time or the presence of bubbles or

organisms

II. Flow Cytometry

Principle:

- Cell flows through the channel are exposed to the **laser** light, which causes light scatter.
- Detectors collect the signal of scattered light, and based on the size, shape, cell granularity, and antigenic components of the cells, the WBC type is identified.

Incident

light source

RBC Histogram

Normal Distribution Histogram in Normal samples

Automated Blood Counter Design

- More than one principle is
- implemented in one analyzer instrument.

Parameters

Parameter	Methadology			
Red cell count	Impedance or light scattering			
Plts count	Impedance technique or by immunofluorescent (Florence-Ab), or optical fluorescent (Florence-dye)			
Total WBC count	Impedance			
WBC Differential count	Flow-cytometry			
MCV	RBC size is measured directly by light scattered or, more frequently by impedance counting.			
Red cell distribution width (RDW)	The distribution of RBC population cell sizes is measured directly for each cell by light scattered or impedance counting.			
Hct	Hct Method is different than PCV. It is a calculated value. Derived by the formula (MCV x RBC count / 10).			
Hb concentration	HiCN method using the photometric technique.			

Parameters

Parameter	Methadology
NRBC	NRBC is counted by using a dye that binds to DNA that is detected by flow cytometer.
Reticulocytes	Reticulocytes are counted by using a Fluorochromes dye that binds to rRNA that is detected by a flow cytometer. <u>Most immature (stage I) reticulocytes will give a high fluorescence signal in comparison to most mature (stage IV).</u>
МСН	Calculated by dividing Hb conc. by RBCs number.
МСНС	Calculated by dividing Hb conc. by Hct value.