9: Normal Subgroups and Factor Groups
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In previous chapters, we studied:

 Groups and their basic properties
« Subgroups and their structure

« Cosets and Lagrange's Theorem
Key Question: When can we make the set of cosets into a group?
This Chapter's Goals:

1. Define normal subgroups

2. Understand when cosets form a group (factor groups)
3. Explore the structure of factor groups

4. See applications and examples
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Definition: Normal Subgroup: Let GG be a group and H a subgroup of G. We say H is a
normal subgroup of G, denoted H < G, i gH = Hg for all g € G.

Important: This does NOT mean gh = hg forallg € G, h € H.It meansthe LEFT cosets
equal the RIGHT cosets as sets.

Theorem 1: Normal Subgroup Test: A subgroup H of GG is normal in GG if and only if:
rHz ' C Hforallz € G

Proof of Theorem: (=) Assume H < G:Foranyh € H andg € G:gh € gH = Hg. So
gh = h/gforsome h' € H.Therefore ghg * = h' € H.Thisshows gHg * C H.

(<) Assume rHx ! C Hforallx € G:WeneedtoshowxH = Hxforallxz € G.
Take any zh € xH where h € H . SincezHx ' C H, wehave zhz * = h' for some
h' € HThuszh = h'z € Hzx, soxH C Hx. Similarly, z *Hz C H implies

Hx C xH. ThereforexH = Hx N
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Note: The condition z Hz ' C H actually implies zHz ' = H because: lf e Hz ' C H
foralz € G.Thenz 'Hx C H (replacing @ with ). Multiplying on left by @ and right
byx " H C xHz ' Thereforex Hz ' = H.Infact H < G iff any of the following
equivalent conditions is satisfied:

- gH = Hgforallg € G.

- gHg ! =Hforallg € G

- ghg ' € Hforallg € Gandallh € H.
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Example 1: Every subgroup of an abelian group is normal.
Proof: Let GG be an abelian group and H be any subgroup of G. Foranyg € G and h € H:

- Since G is abelian: gh = hg
+ Therefore:ghg ' =hgg ' =he=h e H
« This shows gHg ' C H forallg € G.By Theorem1, H < G. B

Key Insight: In abelian groups, left and right cosets are always equal because elements
commute. This makes every subgroup normal.
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Interactive Question: [Quiz]

Q: Consider the group Z19 under addition. How many normal subgroups does it have?
A) 2 (only {0} and Zy5)

B) 3

C) 4

D) All of its subgroups are normal.
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Example 2: The center Z(G) of a group G is always a normal subgroup.
Recal: Z(G) = {2 € G: 29 =gz forall g € G}

Proof:Let 2 € Z(G) and g € G.Wehave gzg ' = 2997 = 2 € Z(QG),s0 Z(G) <4 G.
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Example 3: The alternating group A,, is normal in the symmetric group S,,.
Proof: We'll show that ¢ 4,, = A,,o forallo € §,,.

Case 1:Ifo € A,, (even permutation). Then 0 A,, = A,, (since A,, is a subgroup). And
A, =A, SocdA, = A, 0.

Case2:Ifo é A,, (odd permutation). Then o A,, consists of all odd permutations (odd x even
= odd). And A,,o also consists of all odd permutations (even x odd = odd). Both equal

Sn\ A, . SocA, = A,o.

Therefore A,, < S,,. B
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Example 4: SL(n,R) <« GL(n,R)
Recall:

- GL(n,R) = {n x n matrices with det(A) # 0}
« SL(n,R) = {n x n matrices with det(A4) =1}

Proof: Let A € SL(n,R)and B € GL(n,R). We need to show BAB ™' € SL(n,R).
Using the determinant property det(XY) = det(X ) det(Y):

det(BAB ') = det(B) - det(A) - det(B ') = det(B) - 1

Therefore BAB™ € SL(n,R).S0o SL(n,R) < GL(n,R). =
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Example 5: Any subgroup H of index 2 in a group G is normal.

Proof:Ifg € H,thengH = H = Hg.\fg ¢ H, thensince |G : H| = 2,Gis
partitioned into the disjoint left cosets H and g H and into the disjoint right cosets H and
Hg. Since H is shared, we must have gH = H g. Therefore H < G. B

Example 6: Not all subgroups are normal. Consider H = {e, (12)}in S3. Claim H ASj;
Method 1: (13) - (12) - (13)~' = (13) - (12) - (13) = (23) ¢ H.
Method 2: (13)H = {(13), (123)} # H(13) = {(13), (132)}
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Example 7: Let K = ((123)) = {e, (123), (132)} in S5. Then K < Ss:

Proof: Index argument: | S3| = 6and | K| = 3.50 |S3 : K| = 6/3 = 2. By Example 5, any
subgroup of index 2 is normal. Therefore K <1 S3.

11/10/2025 Fahd Alshammari - Math343 - External Direct Products

11



Example 8: Consider Iy, the dihedral group of order 8. Recall:
Dy = {6,7‘,7“2,7“3, f, ’rf,’I‘Zf,’rgf} where:

* 7 = rotation by 90°
« f =reflection (flip)

crt=e ff=e frf=r"
The subgroup: H = {e,r°} < Dy because H = Z(Dy).

The subgroup K =< r > <4 because it has index 2.
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Example 9: The Klein four-group V- = {e, (12)(34), (13)(24), (14)(23) } is normal in Ay.

Proof: Forany o € Ajandany T € V. Since (O'TO'_I)Z = e and the elements outside of V

are 3-cycles, we must have oro eV,
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Question: Which statement is FALSE about normal subgroups?

AIfH<1Gand K <G, then HN K <G
BVIfTH <«<Gand K < H,then K < G

C) If G is abelian, then every subgroup is normal

D)If |G : H| = 2,then H < G.
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Theorem 2: Let GG be a group and H a normal subgroup of GG. The set of cosets
G/H = {gH : g € G} forms a group under the operation: (aH )(bH) = (ab)H. This
group is called the factor group (or quotient group) of G by H.

Proof: Well-Definedness: We must show thatifaH = a' H and bH = b' H  then
(ab)H = (a'b')H.Given:aH = a'H and bH = b' H. This means:

« @' = ahyforsomehy € H

« b = bhyforsomehy € H

Then using normality:

CL’b’ — (ahl)(bhg) — a(hlb)hz — a(bhg)hz — ab(hghg) € abH
Conclusion: a'd’ € abH, which means (a’b’)H = (ab)H.
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Now we verify that G / H with operation (aH )(bH ) = (ab)H satisfies the group axioms.

1. Closure: Forany aH ,bH € G/H, we have (ab)H € G/H sinceab € G.

2. Associativity: (using associativity in GG)

aH(bHcH) = aHbcH = a(bc)H = (ab)cH = abHcH = (aHbH)cH

3. Identity: eH = H is the identity since: (eH )(gH ) = (eg)H = gH and
(9H)(eH) = (ge)H = gH forallgH € G/H.

4.Inverses: For gH € G/ H, the inverse is g ' H because:
(9H)(¢g 'H) = (99 ")H =eH =Hand (g 'H)(9H) = (9 '9)H =eH = H.

Therefore G/ H is a group. B
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Example 10: The factor group Z /47

Setup: G' = Z (integers under addition). H = 47, = {0, +4, 48, 412, ...} (multiples of
4). Since Z, is abelian, 47, < Z.. The cosets of 47, in Z.:

e 0+4Z=1{...,—8,-4,0,4,8,...}

-1+4Z:{”.—7—3159.“}
c 2447 = {.. ~2,2,6,10,...}
- 3447 = {.. ~1,3,7,11,...}

The factor group: Z /47, = {0 + 47,1 + 47,2 + 47,3 + 47}
Operation (addition of cosets): (a — 4Z) — (b — 4Z) — (a — b) + 47

The factor group Z /47 is isomorphic to Z4 = {0, 1, 2, 3} under addition modulo 4.
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Example 11: The factor group Z1g/(6)

Setup: G = Z13 = {0,1,2,...,17} under addition modulo 18. H = (6) = {0, 6, 12}
(cyclic subgroup generated by 6). Since Zg is abelian, H <1 Zqg. Finding the cosets:

. 0+ H = {0,6,12)

1+ H=1{1,7,13}

2+ H ={2,8,14}

3+ H ={3,9,15}

4+ H = {4,10,16}

5+ H ={5,11,17}

The factor group: Z13/(6) = {0+ H,1+ H,2+ H,3+ H,4+ H,5+ H}

18
Order: |Z13/(6)| = g = 6

Structure: This factor group is isomorphic to Zsg.
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Example 12: Factor group of the dihedral group Dy

Setup: Dy = {e,r, 7,7, f,rf,7°f,7° f} (order 8). K = {e, 7%, f,7*f} (order 4)
First, verify K is a subgroup:

« Closure: Check all products (can verify from D4 multiplication table)
 |dentity.e € K vV

s Inversesie T =e, (P) T =7t = f,(rPf) =10 f v

K is normal: Since |[Dy : K| = 8/4 = 2, by Example 5, K < Dy.So D4/ K == 7.
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Table1: Summary of Factor Group Examples

Group G~ Normal Subgroup H  Factor Group G/ H Order Structure
Z nZ Z./nZ. n >~ Ton
Loy (d) (whered | m) T/ (d) d >~ Z.q
Z1g (6) 718/ (6) 6 >~ Ze
Sn A, S,/ A, 2 ~ 7.,
GL(n,R) SL(n,R) GL(n,R)/SL(n,R) oo ~ R*
D, K ={e,v*, f,r*f} D4/K 2 >~ 7,

Ay V' (Klein 4-group) AV 3

I
&
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General Pattern:

» Cyclic groups factor to cyclic groups

 Factor groups can be simpler (more abelian) than the original

- |G/H| = |G|/|H| when G s finite
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Question: If (& is a non-abelian group and H < G, which is possible?
A) G/ H must be non-abelian

B) G/ H must be abelian

C) G/ H could be either abelian or non-abelian

D) G/ H cannot exist
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KEY APPLICATIONS OF FACTOR GROUPS:

* Proving groups are Abelian (G/Z Theorem)
 Finding elements of specific orders (pull-back constructions)
« Computing automorphism groups (Inn(G) theorem)

* Proving existence theorems (Cauchy's Theorem)

The following theorems demonstrate the power of this approach.

11/10/2025 Fahd Alshammari - Math343 - External Direct Products

23



Theorem 3: Let G be a group and let Z(G) be the center of G. If G/ Z( Q) is cyclic, then G
is Abelian.

Proof: Assume G/ Z(G) is cyclic. Then G/ Z(G) = (aZ(G)) forsome a € G. Let

z,Yy € G be arbitrary. We need to show xy = yz. Since G/ Z(G) is generated by aZ (G),
we can write:

« 2Z(G) = a'Z(QG) for some integer i, and yZ (G) = a’ Z (@) for some integer j. So:
+ & = a'z forsome z; € Z(G), andy = a’ 25 for some 25 € Z(G).

+ Now compute: zy = (a'z1)(a’ z2) = a'(z10” )22 = a'(a’z1) 22 = a7 212

+ Similarly: yz = (a?25)(a'21) = @’ (20a")21 = @’ (a'22)21 = @' 2021 = a7 2129
Therefore, xy = yx. So G is Abelian. B
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Remarks on Theorem 3

Remark 1: A Better Result: The theorem actually proves something stronger: If G/ Z(G) is
cyclic, then G/ Z(G) must be trivial (ie, G = Z(G)).

Proof:If G is Abelian (as we just proved), then Z(G) = G, so G/ Z(G) = {Z(G)} isthe

trivial group.

Remark 2: The Contrapositive: The contrapositive of Theorem 9 is often more useful: IfG is
non-Abelian, then G | Z (G is not cyclic. This gives us a tool for proving that certain factor
groups are non-cyclic.

Remark 3: Trivial Consequence: As a special case: If |G/ Z(G)| = p (a prime), then
G/ Z(Q) is cyclic (by Lagrange), so G must be Abelian. But then G = Z(@G), contradicting
G/Z(G)| =p > 1.So: There is no group G with |G/ Z(G)| = p for any prime p.
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Example 16: If G/H has an element of order n, then G has an element of order n.

Proof: Let aH € G/H have order n. Let k = |a,| (the order of a in ). Since
(aH)k —o"H = H, so n|k. writing k = mn we have (a™)" = a" = eandnis the
smallest such positive integer. So our elementis a’".
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Theorem 4: For any group G, G/ Z(G) is isomorphic to Inn(G).

Proof: Recall that Inn(G) = {d, : a € G} where ¢(z) = aza ' istheinner
automorphism induced by a. Define ¢ : G/ Z(G) — Inn(G) by ¢ (aZ(G)) = ¢a. We
need to verify that ¢ is a well-defined isomorphism.

1. Well-Defined: Suppose aZ(G) = bZ(G). Then b = az for some z € Z(G).Forany
€ G dp(x) =bxb = (az)z(az) ' = azzz ta™ = axa™' = ¢u(z), (Using
that 2 € Z(G) commutes with z). Therefore, ¢ = ¢ha, 50 1P is well-defined.

2. Operation Preserving: ¢ ((aZ(G))(bZ(G))) = ¥(abZ(G)) = ¢ap. Also:
$(aZ(G)) 0 $(bZ(G)) = ¢a 0 ¢y Foranyx € G-

(¢a 0 $) (@) = pa(@1()) = Pa(bzd™) = a(bzb™")a " = (ab)z(ab) " = du(x)
Therefore, ¢, © @y = dgp.

3. One-to-One: Suppose ¥ (aZ(G)) = ¥ (bZ(G)). Then ¢, = ¢y This means
axa ' =bzb lforalxz € G.Whichgivesb lax = zb laforalz € G.This means
b lac Z(G) soa €bZ(G) ie, aZ(G) =bZ(G).

4.0nto: Let ¢, € Inn(G) be arbitrary. Then ¥ (aZ(G)) = ¢q, so 1 is onto.

Fahd Alshammari - Math343 - External Direct Products

27



Example 17: Determining Inn(Ds)

Example 17: Determine Inn( Dg) without computing all inner automorphisms directly.
Solution: We'll use Theorem 4: Inn(Dg) = Dg/Z(Dg).

Step 1: We know: Z(Dg) = { Ry, Riso}, so | Z(Dg)| = 2.

D 12
Step 2: Compute |Dg/Z(Ds)|. | D¢/ Z(Dg)| = |Z| (5L)| =, =6

Step 3: Determine which group of order 6. By the classification of groups of order 6, we have

either Dg/ Z(Dg) =2 Zgor Dg/Z(Dg) = Ds3. Using Theorem 3:If D¢/ Z(Dg) =2 Zg,

then Dg/Z(Dg) is cyclic, so Dg would be Abelian. But Dy is not Abelian. So,
D¢/ Z(Dg) 2 Zs.

Conclusion: Dg/Z(Dg) = Ds. By Theorem 4: Inn(Dg) = Ds.
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Theorem 9.5: Let GG be a finite Abelian group and let p be a prime that divides the order of G.
Then G has an element of order p.

Proof (by strong induction on |G]):
Base Case: If |G| = 2, then clearly the statement is true.

Inductive Step: Assume |G| > 2 and that the theorem holds for all Abelian groups of smaller
order than G.

Case 1: GG has an element a whose order is divisible by p. Say |a| = pm for some positive
integer m.
a m m
m| = I I = P _ P _ p.So a™ is an element of order p,
ged(lal,m) ged(pm,m) m
and we're done!

Then |a

Case 2: Every nonidentity element of G has order not divisible by p. Pick any nonidentity
elementa € G. Let |a| = k where p 1 k. Consider the factor group G/ {a). Since (a) is a
subgroup of G and G'is Abelian, (a) < G.

Now, |G/{a)| = G| = |G|.Sincep | |G|andp 1 k, wehavep | |G|.A|so,
. {a)] & k
IG/(a)| = |k| < |G| (since k > 1). By the inductive hypothesis, G/ {a) has an element

of order p. By example 16 so is G.
Fahd Alshammari - Math343 - External Direct Products
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Motivation: Reversing the External Direct Product
Recall: Given groups GG and H, we can form the external direct product G & H.

* Elements: ordered pairs (g, h)
+ Operation: (g1, h1)(g2, h2) = (9192, h1h2)

New Question: Can we go in reverse? Given a group G, can we find subgroups H and K
such that G "looks like" H & K

Example: Starting from Zsg and Zs, we formed Ziy @ Z3 = Zg. We can also write
Zg = (3) x (2) where (3) = {0,3} and (2) = {0, 2,4} are subgroups of Zg.

Goal: Formalize when a group GG can be "decomposed" as a product of its subgroups. This is

called an internal direct product.
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Definition: Let H and K be subgroups of a group GG. We say (G is the internal direct
product of H and K, written G = H x K, if:

1. H and K are normal.
2. G=HK ={hk:h € H,k € K} (every element can be written as a product)
3. HN K = {e}.

Example:

« Ul(st) = U,(st) x Uy(st), where s and t be relatively prime positive integers. (Thm 8.3).
+ D¢ = {Ro, Ri20, Raao, F'y RiaoF, RogoF'} X {Ro, Ruso }-
+ 83 7 1(1),(123), (132)} x 1(1), (12) }.
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Definition: Let Hy, Ho, ..., H,, be subgroups of a group GG. We say G5 is the internal direct
product of H{, H,, ..., H,, writtennG = Hy X Hy X -+- X H,, Iif:

1. Hqy,Hy,--- H, are normal.
2. G=H{Hy---H, ={hihy---h, : h; € H;}
3. (HiHy---H;) "H; 1 ={e}foralli =1,2,...,n—1

Note: Condition 3 is stronger than just requiring H; N H,; = {e} fori # 4.

Theorem 6(Internal = External): If G = H; X Hy X --- X H,, (internal direct product),
then G =2 HH S Hy D ---P H,.
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Proof: First, we show elements from different subgroups commute with each other: For

hi € Hyand hj € Hjwithi # j, hihj = hjh;iffe = hihjh; "h:

* By normality, hz-(hjhz-_lhjfl) = (hihjhi_l)hj_l € H; N H; = {e}. Therefore,
hihj — hjhg forall h; € H; and hj - Hj.

Next, we prove each element of G has a unique representation as hihs . . . h,, with
h; € H; Suppose g = hihs ... h, = h'lh’z e h,f,b where h;, h; € H; Then:

+ hi'h) = hohl thahy ... hyhl . The left side belongs to Hy, while the right side
belongs to HoH3 ... Hy. Since (Hy) N (HoHs ... H,) = {e} (by condition 3), we
have by = hj. Continuing, we get h; = h;, for all ¢.
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Themapp : G — Hi ® Hy® ... H,by: o(hihs...hy) = (hi,ha, ..., hy)is:

» Well-defined (by unique representation)
* One-to-one (by unique representation)
* Onto (by construction)

» Operation-preserving (using the commutativity of elements from different subgroups):

90(9192) — @((hl o hn)(hi e h;l)) — Qo(hlhll RR hnhil) — (hl ’1: AR ,hnh;) — (hl, .- -,hn) ' (

Therefore G =2 HH & H ... H,,
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Theorem 9.7: Every finite Abelian group G of square free order is cyclic.

Proof: Let |G| = p1p2 - - - Pr, Where P1, P2, . .., Pr are distinct primes. By Cauchy's
Theorem (Theorem 9.5), for each p;, there exists an element a; € G with |a3-| = p;:

« ltfollowsfromThm72that G =< a1 > X < as > X...X < a, >
« ByThmo6 G=<a1 >P <ay > P...o6 <a, >
* By Corof Thm82 G = Zyp,py- - -p,
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Theorem8: Every group of order p2, where p is a prime, is isomorphic to either: Zz2, or

Ty @ Ly,

Proof: Let G be a group of order pz, where p is prime. If G has an element of order pz, then
G = Zy» and we are done. Otherwise, by Corollary 2 of Lagrange's Theorem, every non-
identity element a has order p. We first prove that the cyclic subgroup (a) is normal in G-

- Suppose (a) is not normal. Then there exists b € G such that bab ! ¢ (a). So
(a) # (bab ') and (a) N (bab ') = {e}.

+ The distinct left cosets of (bab *): (bab™ '), a{bab '),a*(bab *),...,a’ *(bab ).

. Sinceb ! belongs to one of these cosets, we have bl = ai(bab_l)j — a'ba’b ! for
some 4, j. Cancellingb " we gete = a'ba’. So b=a “7 € (a). Butthen
b(a)b_l = (a), contradicting our assumption.

Therefore, <a> isnormal in G foranya € G.
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Now, let & be any non-identity element in G'and y € G notin (z). Claim G =

» Both () and (1) are normal in G (as we just proved)
- [{(z)| = [{y)| = p (as all non-identity elements have order p)

« (x) N (y) = {e} (since both have prime order)
* (@) w)| = (@) [[W)l/[(z) N ()| =p-p=p" =G

Therefore, G = <:E> X < > is an internal direct product. By Theorem 9.6,
G () D (y) = Zy, DLy
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Exercise:

True or False?

Fvery group of order pz, where p is a prime, is Abelian.
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Corollary: Every group of order pz, where p is a prime, is Abelian.

Proof: Every group of orderp2 is isomorphic to either Zy2 or Zy, @ 2. Both Z,» and
Ly @ Ly are Abelian groups. Therefore, every group of orderp2 is Abelian
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