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1 1 1.5 2 -2 -0.75 0.75 1 a=15
2 1.5 1.75 2 -0.75  0.0625  0.0625 1 b=175
3 1.5 1.625 1.75 -0.75  -0.3594  0.3594 0.0625 a=1.625
4 1.625 1.6875 175  -0.3594 -0.1523 0.1523 0.0625 a=1.6875
5 1.6875 1.7188  1.75  -0.1523 -0.0457 0.0457 0.0625 a=1.7188
6 1.7188 1.7344 175  -0.0457 0.0081  0.0081 0.0625

<55 | f (Xmig)] < & of B
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X" =Xmig =2 N <« |f (emig)| < € ol a3

Sl 358 la) s aga
£ 1<x<6 s cnl Jak

66



Ghil) 5 A pll Cisalll) 43y )

IS a xma b f@ fGmia) w0l f(h) s s
1 1 3.5 6 -3 15.75 15.75 72 b=3.5
2 1 2.25 3.5 -3 1.6875 1.6875 15.75 b =2.25
3 1 1.625 2.25 -3 -1.8281 1.8281 1.6875 a=1.625
4 1.625 1.9375 2.25 -1.8281 -0.3633 0.3633 1.6875 a=1.9375
5 1.9375 2.0938 2.25 -0.3633 0.5892 0.5892 1.6875 b=2.0938
6 1.9375 2.0157 2.0938 -0.3633 0.0949 0.0949 0.5892 b=2.0157
7 1.9375 19766 2.0157 -0.3633 -0.1388 0.1388 0.0949 a=1.9766
8 1.9766 19962 2.0157 -0.1388 -0.0228 0.0228 0.0949 a=1.9962
9 1.9962 2.0060 2.0157 -0.0228 0.0361 0.0361 0.0949 b=2.006
10 1.9962 2.0011 2.0060 -0.0234 0.0066 0.0066 0.0361
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67



Ghil) 5 A pll Cisalll) 43y )

rCanaiill 44 yh ARENTE A el Ja aa ) dm
max f(x) = —3x%+ 9x + 10
st. —-1<x<5 |

c=0.02 Laiiia

10

(f'(x) = —6x+9 h
f(@)=f(-1)=6+9 =15 :
f'(b) = f'(5) = =30 + 9 = —21

F@f(b) = =315 < 0 )

Ny

68



Ghil) 5 A pll Cisalll) 43y )

rCanaiill 44 yh ARENTE A el Ja aa ) dm
max f(x) = —3x%+ 9x + 10

st. —-1<x<5 f1eop
c=002 Laiiua 15
10
N
:.~..,. 5 ]\ J..J.A Jt%ﬁl G\.. . 3)
ffx)=—6x+9=0
- 2 1 0 1 2 3 4 5’ 69
Y X



Ghil) 5 A pll Cisalll) 43y )

JAN g Xmig b '@ f'(mig) VOomal f1(h) 5l Gy
1 -1 2 5 15 -3 3 -21 b=2
2 -1 0.5 2 15 6 6 -3 a=0.5
3 0.5 1.25 2 6 1.5 1.5 -3 a=1.25
4 1.25 1.625 2 1.5 -0.75 0.75 -3 b =1.625
5 1.25 1.438 1.625 1.5 0.372 0.372 -0.75 a=1.438
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9 1485  1.497 1.509 0.09 0.018 0.018 -0.054
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0 4 48 56 3.143 12.704
1 3.143 12.704 27.841 2.687 2.7
2 2.687 2.7 16.45 2.523 0.293
3 2.523 0.293 12.963 2.5 0
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n Xn f(xn) f’(xn) Xn+1 |f(xn+1)|
0 2 1 4 1.75 0.0625
1 1.75 0.0625 3.5 1.7321 0.0002
|f ()| < € o B3k
x*=x, =1.7321 13
x* = x3 = 1.734 e Janivic xy = 4 2 Ul
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0 4 13 8 2.375 2.641
1 2.375 2.641 4.75 1.819 0.309
2 1.819 0.309 3.638 1.734 0.007
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