Determination of Plasma Amylase

BCH472 [Practical]

-Amylase :

- Amylase is an enzyme that <u>catalyze the breakdown of starch and glycogen</u> by hydrolysis of internal α-1,4-glycoside bonds into smaller carbohydrate groups (maltose, oligosaccharides, glucose).
- It is produced in the salivary glands, pancreas, liver, and fallopian tubes and is **normally** excreted in **small** amounts in the urine.

-Amylase main sources :

• Among healthy individuals, the pancreas and the salivary glands account for almost all serum amylase, 40-45% from the pancreas and 55-60% from the salivary glands.

- Electrophoresis shows that serum amylase is of **2 main types**:
- 1. P-type amylase from the pancreas.
- 2. S-type amylase from the salivary glands.

-Amylase in Serum and Urine :

• This test of blood and urine is most often used to distinguish acute pancreatitis and other causes of abdominal pain that require immediate surgery.

• If the pancreas or salivary glands are inflamed, much more of the enzyme enters the blood and, consequently, more amylase is <u>excreted in the urine</u>.

• Serum and urine amylase measurement in addition to other laboratory tests, amylase clearance, amylase isozyme, and measurement of **serum lipase levels**, increase the specificity of amylase measurement in the <u>diagnosis of acute pancreatitis</u>.

Pancreas Function Test:

- Blood levels of the pancreatic enzymes amylase and lipase are measured.
- This test used to diagnose and monitor treatment of acute pancreatitis.

PRINCETONVET.NET

-Range of expected values of amylase:

- Serum : 16-108 U/L
- **Urine:** 0 14 U/hour

-Increased plasma amylase (hyperamylasemia):

- Salivary gland inflammation.
- Pancreatitis.
- Pancreatic cancer.
- Obstruction of pancreatic duct.

-Decreased plasma amylase:

- Pancreatic insufficiency.
- Severe liver disease

Practical Part

-Objective:

• To estimate the concentration of amylase in serum.

-Principle (of the used kit) :

1-Amylase hydrolyzed p-nitrophenyl D-maltoheptoside (**PNPG7**) to P-nitrophenylmaltotriose (**PNPG3**) and **maltotetrose:**

PNPG7 — AMYLASE (in the sample) PNPG7 — PNPG3 + Maltotetrose

2- Glucoamylase hydrolyzes PNG3 to P-nitrophenylglycosie (PNPG1) and glucose:

PNPG3 _____ GLUCOAMYLASE _____ PNPG1 + Glucose

GLUCOSIDASE

3-Then **PNPG1** is hydrolyzed by glycosidase to glucose and **P-nitrophenol** which produce a yellow color which absorb at 405nm, the rate of increase in Ab is measured at 405 nm and is proportional to the amylase activity in the sample:

PNPG1

p-Nitrophenol + Glucose

CHEMICALS	SAMPLE	
Amylase substrate	1.0 ml	
Pre-warm at 37C for 5 minutes and add:		
Serum	0.025 ml	

1. Mix and incubate at 37°C for **90 seconds** and read the absorbance at **405 nm** against distilled water.

2. Continue readings every 30 seconds for 2 minutes and determine $\Delta A/min$.

-Results:

Time	Absorbance at 405 nm
(Seconds)	
0	
30	
60	
90	
120	

-Calculations:

-Amylase Activity in TEST (U/L)= $\Delta A/\min x \ 4824$

Δ A/min = (Δ A1+ Δ A2) ÷ 2

$$\Delta A1 = (A60s - A30s) + (A30s - A0s)$$

$$\Delta A2 = (A120s - A90s) + (A90s - A60s)$$

-Homework:

• Mention other biochemical markers of acute pancreatitis?

-References:

- Fischbach FT, Dunning MB. A Manual of Laboratory and Diagnostic Tests. Lippincott Williams & Wilkins, 2009 .p. 419-420.
- BCH472 practical note.