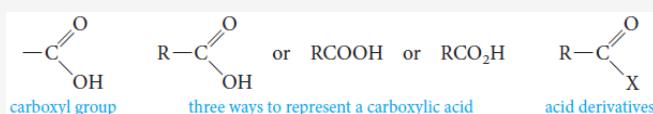


# Introduction to Organic Chemistry

## CHEM 108

Credit hrs.: (3+1)

*King Saud University*


College of Science, Chemistry Department

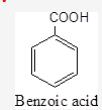
### CHAPTER 8: Carboxylic Acids

1

## Structure of Carboxylic Acids

- The functional group common to all carboxylic acids is the carboxyl group.  
*The name is a contraction of the parts: the carbonyl and hydroxyl groups.*
- The general formula for a carboxylic acid can be written in expanded or abbreviated forms.




- Depending on whether an **R** or an **Ar** residue is attached to the carboxyl group; **Carboxylic acids are classified as;**
  - **Aliphatic Carboxylic Acids.**
  - **Aromatic Carboxylic Acids.**

$R-COOH$   
Aliphatic acid

$(R = H \text{ or alkyl})$

$CH_3-COOH$   
Acetic acid

$Ar-COOH$   
Aromatic acid



2

## Nomenclature of Carboxylic Acids

### Common Names

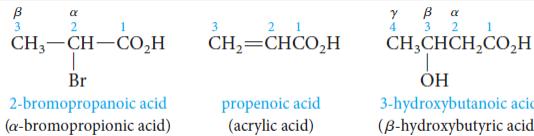
- The **common names** of carboxylic acids **all** end in **-ic acid**.
- These names usually come from some Latin or Greek word that indicates the original source of the acid.
- Common name**, substituents are located with Greek letters, beginning with the  $\alpha$ -carbon atom.

### IUPAC System

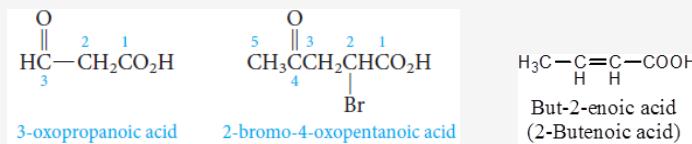
- We replace the final **e** in the name of the corresponding alkane with the suffix **-oic** and add the word **acid**.

Alkane- **e** + **oic acid** = **Alkanoic acid**

- IUPAC system**, the chain is numbered beginning with the carboxyl carbon atom, and substituents are located in the usual way.


3

## Nomenclature of Carboxylic Acids

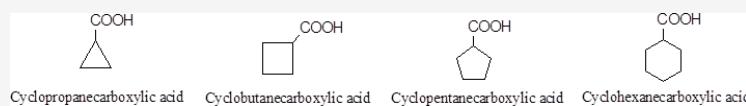

| Carbon atoms | Formula                                              | Source                                                                                | Common name     | IUPAC name     |
|--------------|------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------|----------------|
| 1            | HCOOH                                                | ants (Latin, <i>formica</i> )                                                         | formic acid     | methanoic acid |
| 2            | CH <sub>3</sub> COOH                                 | vinegar (Latin, <i>acetum</i> )                                                       | acetic acid     | ethanoic acid  |
| 3            | CH <sub>3</sub> CH <sub>2</sub> COOH                 | milk (Greek, <i>protos pion</i> , first fat)                                          | propionic acid  | propanoic acid |
| 4            | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> COOH | butter (Latin, <i>butyrum</i> )                                                       | butyric acid    | butanoic acid  |
| 5            | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> COOH | valerian root (Latin, <i>valere</i> , to be strong)                                   | valeric acid    | pentanoic acid |
| 6            | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> COOH | goats (Latin, <i>caper</i> )                                                          | caproic acid    | hexanoic acid  |
| 7            | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>5</sub> COOH | vine blossom (Greek, <i>oenanthe</i> )                                                | enanthic acid   | heptanoic acid |
| 8            | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>6</sub> COOH | goats (Latin, <i>caper</i> )                                                          | caprylic acid   | octanoic acid  |
| 9            | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>7</sub> COOH | pelargonium (an herb with stork-shaped seed capsules; Greek, <i>pelargos</i> , stork) | pelargonic acid | nonanoic acid  |
| 10           | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>8</sub> COOH | goats (Latin, <i>caper</i> )                                                          | capric acid     | decanoic acid  |

4

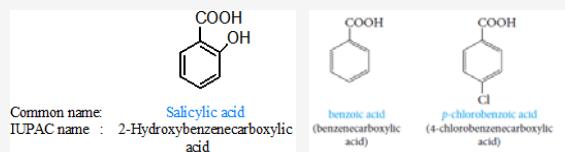
## Nomenclature of Carboxylic Acids



- The carboxyl group has priority over alcohol, aldehyde, or ketone functionality in naming.
- The prefix **oxo-** is used to locate the carbonyl group of the aldehyde or ketone.




5


## Nomenclature of Carboxylic Acids

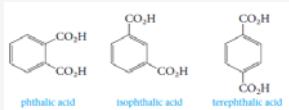
### Cycloalkane carboxylic acid

When the carboxyl group is attached to a ring, the ending **-carboxylic acid** is added to the name of the parent **cycloalkane**. (i.e. **Cycloalkanecarboxylic acid**)



- **Aromatic acids** are named by attaching the suffix **-oic acid** or **-ic acid** to an appropriate prefix derived from the aromatic hydrocarbon.




6

## Nomenclature of Carboxylic Acids

- **Dicarboxylic acids** (acids that contain two carboxyl groups)

- **Common names.**

They are known almost exclusively by their **common names**.

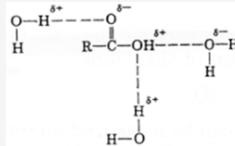
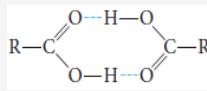


Common name: Benzene-1,2-dicarboxylic acid  
IUPAC name: Benzene-1,2-dicarboxylic acid

Common name: Benzene-1,3-dicarboxylic acid  
IUPAC name: Benzene-1,3-dicarboxylic acid

Common name: Benzene-1,4-dicarboxylic acid  
IUPAC name: Benzene-1,4-dicarboxylic acid

- **IUPAC system**



They are given the suffix *-dioic acid* in the IUPAC system.



7

## Physical Properties of Acids

- **Carboxylic acids** are **polar** and they **form hydrogen bonds** with themselves or with other molecules.
- **Carboxylic acids form dimer**, with the individual units held together by two hydrogen bonds between the electron-rich oxygens and the electron-poor hydrogens.



### Boiling Points

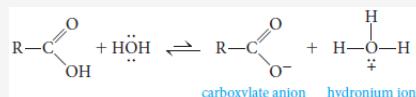
Therefore, they have high boiling points for their molecular weights-higher even those of comparable alcohols.

### Solubility in water

Hydrogen bonding also explains the water solubility of the lower molecular weight carboxylic acids.

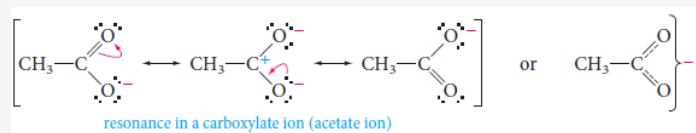
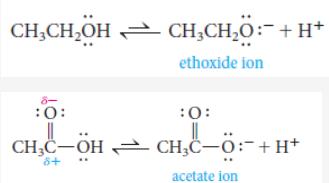
- The **first four aliphatic acids** (formic through butyric) are **completely miscible in water**.
- **Aromatic acids** are **insoluble in water**.

8


## Physical Properties of Acids

| Structure                                                          | Name                     | Mol. Wt. | b.p. °C | Solubility in H <sub>2</sub> O at 25°C |
|--------------------------------------------------------------------|--------------------------|----------|---------|----------------------------------------|
| HCOOH                                                              | Formic acid              | 46       | 100     | Very soluble                           |
| CH <sub>3</sub> CH <sub>2</sub> OH                                 | Ethyl alcohol            | 46       | 78      | Very soluble                           |
| CH <sub>3</sub> COOH                                               | Acetic acid              | 60       | 118     | Very soluble                           |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH                 | <i>n</i> -Propyl alcohol | 60       | 97      | Very soluble                           |
| CH <sub>3</sub> (CH <sub>2</sub> ) <sub>3</sub> COOH               | Valeric acid             | 102      | 187     | 4.0 g/100 g H <sub>2</sub> O           |
| CH <sub>3</sub> (CH <sub>2</sub> ) <sub>4</sub> CH <sub>2</sub> OH | <i>n</i> -Hexyl alcohol  | 102      | 156     | 0.6 g/100 g H <sub>2</sub> O           |
| Ph-COOH                                                            | Benzoic acid             | 122      | 250     | Insoluble                              |
| Ph-CH <sub>2</sub> CH <sub>2</sub> OH                              | 3-Phenylethanol          | 122      | 250     | Insoluble                              |

9

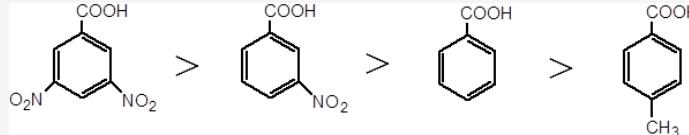


## Acid Strength and Structure

- Carboxylic acids (RCOOH) dissociate in water, yielding a carboxylate anion (RCOO<sup>-</sup>) and hydronium ion.



### Why carboxylic acids are more acidic than alcohols?

- In **ethoxide ion**, the negative charge is localized on a single oxygen atom.
- In **acetate ion**, on the other hand, the negative charge can be delocalized through **resonance**.




10

## Acid Strength and Structure

### Effect of Structure on Acidity; the Inductive Effect

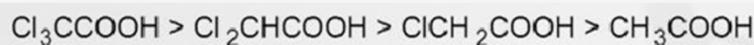
- Acidities can vary depending on what other groups are attached to the molecule.
- Recall that *electron-withdrawing groups (-I) enhance acidity*, and *electron-releasing groups (+I) reduce acidity*.  
*This effect relays charge through bonds, by displacing bonding electrons toward electronegative atoms, or away from electropositive atoms.*



11

## Acid Strength and Structure

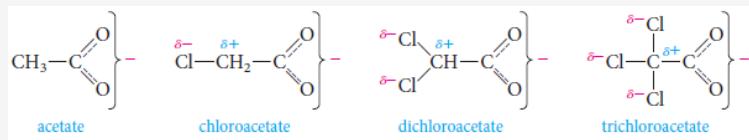
### Effect of Structure on Acidity; the Inductive Effect


- Formic acid is a substantially stronger acid than acetic acid.

*This suggests that the methyl group is more electron-releasing (hence anion-destabilizing and acidity-reducing) than hydrogen.*

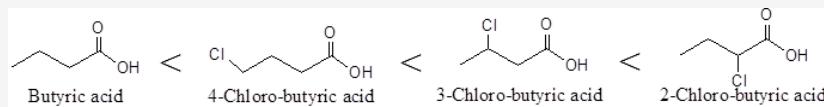


- Example: acetic acid with those of mono-, di-, and trichloroacetic acids.


*Comparison of acid strengths of acetic Acid and chlorinated acetic acids*



12


## Acid Strength and Structure

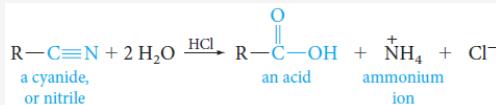
## Effect of Structure on Acidity; the Inductive Effect



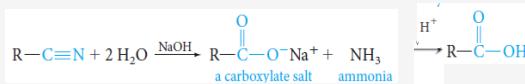
The more chlorines, the greater the effect and the greater the strength of the acid.

- Comparison of acid strengths of butyric acid and the monochlorinated acids.

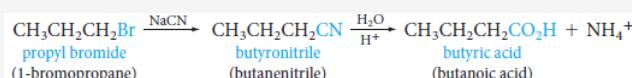



13

## 1) Hydrolysis of Cyanides (Nitriles)


## Preparation of Acids

- The reaction requires either acid or base.

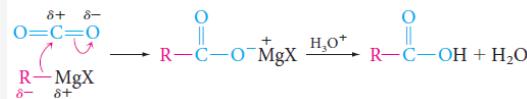

- In acid, the nitrogen atom of the cyanide is converted to an ammonium ion.



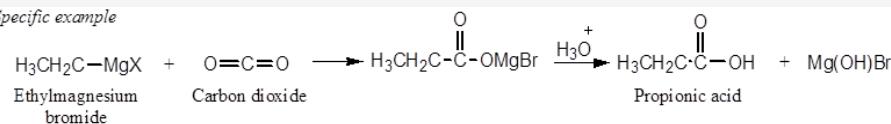
- In base, the nitrogen atom is converted to ammonia and the organic product is the carboxylate salt, which must be neutralized in a separate step to give the acid.



- **Alkyl cyanides** are generally made from the corresponding alkyl halide




14

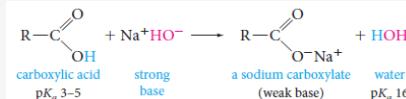

## 2) Reaction of Grignard Reagents with Carbon Dioxide (Carbonation of Grignard Reagent)

### Preparation of Acids

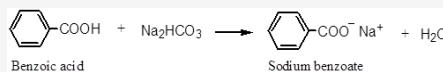
- Grignard reagents add to the carbonyl group of carbon dioxide to give acids, after protonation of the intermediate carboxylate salt with a mineral acid like aqueous HCl.
- The acid obtained has one more carbon atom (*the reaction provides a way to increase the length of a carbon chain*).



Specific example

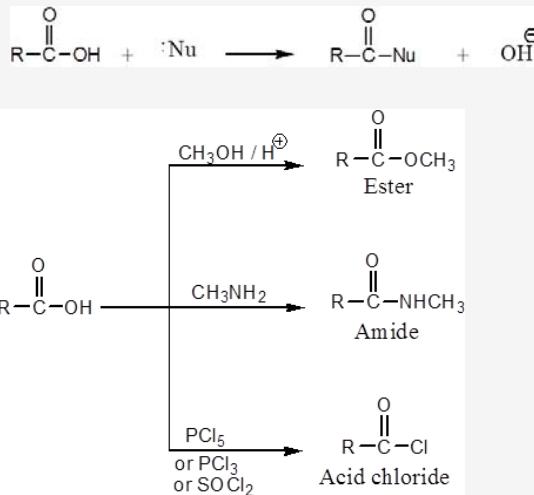

15


## 1) Reactions with Bases: Salt Formation

### Reactions of Acids

- Carboxylic acids, when treated with a strong base, form carboxylate salts.




- Examples.



16

## 2) Nucleophilic Substitution Reactions

### Reactions of Acids



17

## Carboxylic Acid Derivatives

- Carboxylic acid derivatives are compounds in which the hydroxyl part of the carboxyl group is replaced by various other groups.



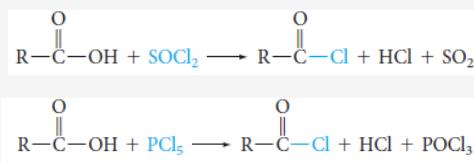
- All acid derivatives can be hydrolyzed to the corresponding carboxylic acid.

| Acid derivative                                                                                                                                      | HOH (hydrolysis)                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| $\text{R}-\overset{\text{O}}{\underset{\parallel}{\text{C}}}-\text{Cl}$<br>acyl halide                                                               | $\text{R}-\overset{\text{O}}{\underset{\parallel}{\text{C}}}-\text{OH} + \text{HCl}$         |
| decreasing reactivity                                                                                                                                | $2 \text{R}-\overset{\text{O}}{\underset{\parallel}{\text{C}}}-\text{OH}$                    |
| $\text{R}-\overset{\text{O}}{\underset{\parallel}{\text{C}}}-\text{O}-\overset{\text{O}}{\underset{\parallel}{\text{C}}}-\text{R}$<br>acid anhydride |                                                                                              |
| $\text{R}-\overset{\text{O}}{\underset{\parallel}{\text{C}}}-\text{O}-\text{R}'$<br>ester                                                            | $\text{R}-\overset{\text{O}}{\underset{\parallel}{\text{C}}}-\text{OH} + \text{R}'\text{OH}$ |
| $\text{R}-\overset{\text{O}}{\underset{\parallel}{\text{C}}}-\text{NH}_2$<br>amide                                                                   | $\text{R}-\overset{\text{O}}{\underset{\parallel}{\text{C}}}-\text{OH} + \text{NH}_3$        |
| Main organic product                                                                                                                                 |                                                                                              |
| acid                                                                                                                                                 |                                                                                              |

18

## Acid Chloride

## Carboxylic Acid Derivatives

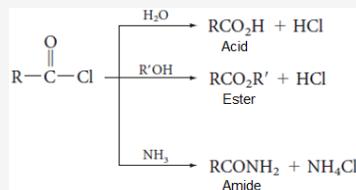

- **Acy chlorides** have the general formula  $\text{RCOCl}$ .
- **Acy chlorides** are more common and less expensive than bromides or iodides.
- **Nomenclature:**

Acy chlorides, or **acid chlorides**, are named by replacing the *-ic acid* ending of the parent acid by *-yl chloride*.

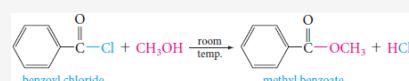
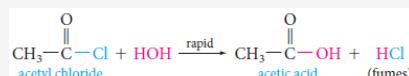


- **Preparation:**

They can be prepared from acids by reaction with thionyl chloride or phosphorous pentachloride.




19

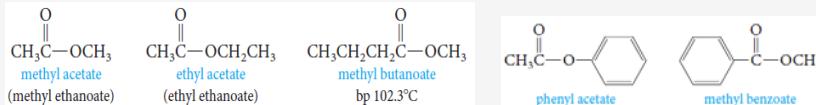


## Acid Chloride

## Carboxylic Acid Derivatives

- **Reactions:** They can react rapidly with most nucleophile.

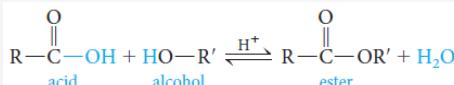


- **Examples:**




20

## Esters


## Carboxylic Acid Derivatives

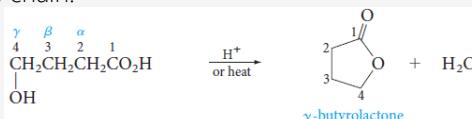
- Esters** are derived from acids by replacing the  $-\text{OH}$  group by an  $-\text{OR}$  group and have the general formula  $\text{R}/\text{COOR}$ .
- Nomenclature:**
  - They are named in a manner analogous to carboxylic acid salts.
  - The **R part of the  $-\text{OR}$  group is name first**, followed by the name of the acid, with the ic acid ending changed to ate.



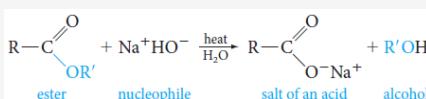
### Preparation:

When a carboxylic acid and an alcohol are heated in the presence of an acid catalyst ( $\text{HCl}$  or  $\text{H}_2\text{SO}_4$ ), an equilibrium is established with the ester and water.

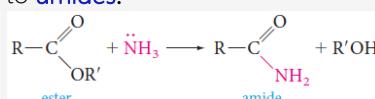



21

## Esters


## Carboxylic Acid Derivatives

### Reactions


- Cyclic esters (lactones)** can be prepared from hydroxy acids if these groups can come in contact through bending of the chain.



- Saponification;** esters are commonly hydrolyzed with base.

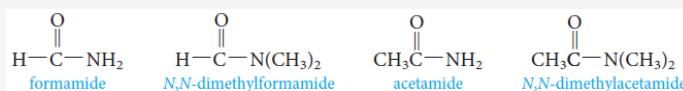
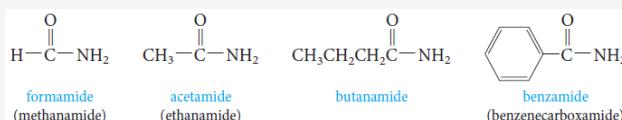


- Ammonia converts esters to **amides**.



22

## Amides



## Carboxylic Acid Derivatives

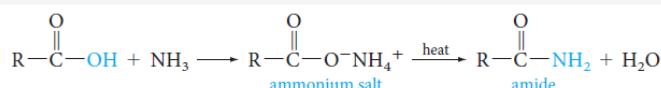
○ **Amides** are the least reactive of the common carboxylic acid derivatives.

○ Primary amides have general formula  $\text{RCONH}_2$ .

○ **Nomenclature:**

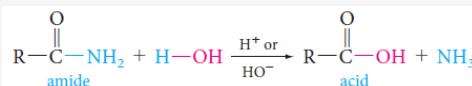
Amides are named by replacing the *-ic* or *-oic acid* ending of the acid name, either the common or the IUPAC name, with the *-amide* ending.



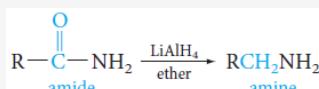

23

## Amides

## Carboxylic Acid Derivatives


○ **Preparation:**

- They can be prepared by the reaction of ammonia with esters, with acyl halides, or with acid anhydrides.
- Amides can also be prepared by heating the ammonium salts of acids.




○ **Reactions**

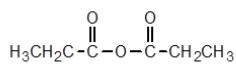
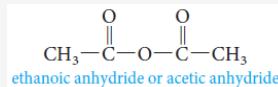
- **Amides** react with nucleophiles and they can be hydrolyzed by water.



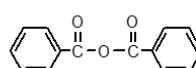
- **Amides** can be reduced by lithium aluminum hydride to give amines.



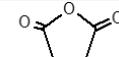
24



## Acid Anhydrides

## Carboxylic Acid Derivatives


- Acid anhydrides have general formula  $\text{RCOOCOR}$ .

- Nomenclature:**


The name of an anhydrides is obtained by naming the acid from which is derived and replacing the word acid with anhydride.



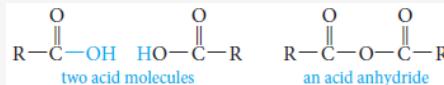
IUPAC name: Propanoic anhydride  
Common name: Propionic anhydride



Benzoic anhydride

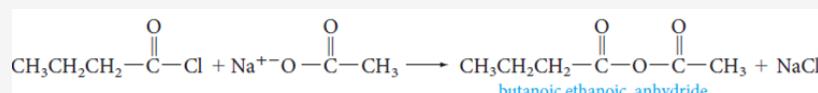


Succinic anhydride


25

## Acid Anhydrides

## Carboxylic Acid Derivatives


- Preparation**

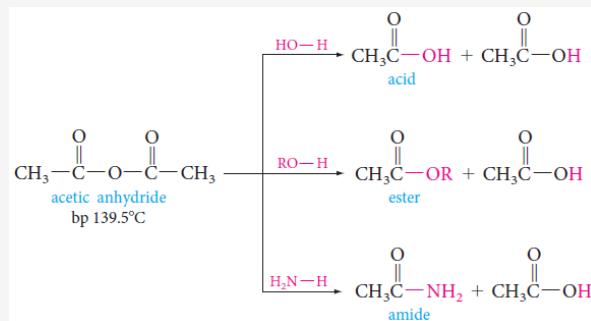
- Acid anhydrides are derived from acids by removing water from two carboxyl groups and connecting the fragments.



- Anhydrides can also be prepared from acid chlorides and carboxylate salts.

*This method is used for preparing anhydrides derived from two different carboxylic acids (mixed anhydrides).*




26

## Acid Anhydrides

## Carboxylic Acid Derivatives

### o Reactions

- Anhydrides undergo nucleophilic acyl substitution reactions (They are more reactive than esters, but less reactive than acyl halides).

