

Applied Mathematics for Biomedical Technology

King Saud University	
College of Applied Medical Sciences	
Biomedical Technology Department	
Second Midterm Course Instructor: Dr. Widad Babiker	
Course No. 222, first Semester 1440-1441	
Date Time: Thursday 22/3/1441 h	
الموافق 19/11/2019 م	
<u>Time: 90 Minutes</u>	

Student's Name	
Student's ID	

Question No.	Q_1	Q_2	Q_3	Q_4	Total
Maximum Marks					
Marks Obtained					

Q. No. 1

i. Simplify: a. $\frac{1}{4}\log 1 + \frac{3}{4}\log 16 + \frac{1}{2}\log 9 - 2\log 2$

b.
$$\sqrt{e^{2\ln x}}$$
, $x > 0$

- ii. Find the solution of $3^x + 1 = -2$ if it exists
- iii. Change to exponential form. $\log x = y + 4$

iv. State the range of possible values of an angle β such that $\cos \beta > 0$ and $\tan \beta < 0$.

Q. No. 2. Prove the given identities: (All details are required)

 $\mathbf{i.} \qquad \frac{\tan x - \sin x}{\sin^3 x} = \frac{\sec x}{1 + \cos x}$

 $ii. \qquad \frac{\cos 2x + \cos x + 1}{\sin 2x + \sin x} = \cot x$

iii. Find $\sin(2\theta)$ and $\cos(2\theta)$ given that $\cos \theta = -\frac{24}{25}$, θ in quadrant III.

Q. No. 3.

i. Derive (prove) the sines law of an oblique triangle ABC. (All details are required)

ii. The current through a diode, *I*, is given by $I = I_s (e^{40V} - 1)$ where *I* is the reverse saturation current and *V* is the voltage across the diode. (a) Express *V* as the subject of the equation. (b) Evaluate *V* when $I = 3 \times 10^{-2}$, $I_s = 1.5 \times 10^{-4}$.

Q. No. 4.

i. Graph $f(x) = 2^{x+1} - 3$. State the domain, range, and asymptote. (All details are needed)

ii. The voltage gain, measured in decibels (dB), of an amplifier is given by: $gain = 20 \log \left(\frac{V_0}{V_i}\right)$ Where V_i is the input voltage and V_0 is the output voltage. The

output voltage from an amplifier is 250 mV. If the amplifier has a gain of 17 dB calculates the input voltage. (All details are needed)