Applied Mathematics for Biomedical Technology

King Saud University
College of Applied Medical Sciences
$\underline{\text { Biomedical Technology Department }}$
$\underline{\text { Second Midterm Course Instructor: Dr. }}$
$\underline{\text { Widad Babiker }}$
$\underline{\text { Course No. 222, first Semester 1440-1441 }}$
$\underline{\text { Date Time: Thursday 22/3/1441 h }}$
$\underline{\text { 19/11/2019 }}$
Time: 90 Minutes

Student's Name	
Student's ID	

Question No.	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Total
Maximum Marks					
Marks Obtained					

Q. No. 1
i. Simplify:
a. $\frac{1}{4} \log 1+\frac{3}{4} \log 16+\frac{1}{2} \log 9-2 \log 2$
b. $\sqrt{e^{2 \ln x}}, x>0$
ii. Find the solution of $3^{x}+1=-2$ if it exists
iii. Change to exponential form. $\log x=y+4$
iv. State the range of possible values of an angle β such that $\cos \beta>0$ and $\tan \beta<0$.
Q. No. 2. Prove the given identities: (All details are required)
i. $\frac{\tan x-\sin x}{\sin ^{3} x}=\frac{\sec x}{1+\cos x}$
ii. $\frac{\cos 2 x+\cos x+1}{\sin 2 x+\sin x}=\cot x$
iii. Find $\sin (2 \theta)$ and $\cos (2 \theta)$ given that $\cos \theta=-\frac{24}{25}, \theta$ in quadrant III.
Q. No. 3.
i. Derive (prove) the sines law of an oblique triangle ABC . (All details are required)
ii. The current through a diode, I, is given by $I=I_{s}\left(e^{40 V}-1\right)$ where I is the reverse saturation current and V is the voltage across the diode.
(a) Express V as the subject of the equation.
(b) Evaluate V when $I=3 \times 10^{-2}, \quad I_{s}=1.5 \times 1 o^{-4}$.
Q. No. 4.
i. Graph $f(x)=2^{x+1}-3$. State the domain, range, and asymptote. (All details are needed)
ii. The voltage gain, measured in decibels (dB), of an amplifier is given by: gain $=20 \log \left(\frac{V_{0}}{V_{i}}\right)$ Where V_{i} is the input voltage and V_{0} is the output voltage. The output voltage from an amplifier is 250 mV . If the amplifier has a gain of 17 dB calculates the input voltage. (All details are needed)

