King Saud University

Applied Mathematics for Biomedical Technology

BMT (222)

Time: 90 Minutes

King Saud University
College of Applied Medical Sciences
Biomedical Technology Department
$\underline{\text { First Midterm }}$
$\frac{\text { Course Instructor: Dr. Widad Babiker }}{\text { Course No. 222, second Semester 1440-1441 }}$
$\underline{\text { Date Time: Thursday 7/7/14410 }}$
$\underline{\text { 2020/3/3 }}$
2020

Student's Name	
Student's ID	

Question No.	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{3}}$	$\mathbf{Q}_{\mathbf{4}}$	Total
Maximum Marks					
Obtained Marks					

Question I

i. Express the quotient in simplest form: $\frac{9 x^{2}-16}{3 x^{2}+17 x-28} \div \frac{3 x^{2}-2 x-8}{x^{2}+5 x-14}$ (write all details)
ii. Find the partial fraction decomposition of $\frac{x^{2}+14 x-13}{x^{3}+5 x^{2}+4 x+20}$ (write all details)
iii. Solve the given equation for $x: \quad 6-\frac{5}{x}=4+\frac{3}{3}$ (all details are needed)

Question 2

i. Simplify the complex fraction $\frac{\frac{x^{2}}{y}-\frac{y^{2}}{x}}{\frac{x}{y}+1+\frac{y}{x}}$ (all details are needed)
ii. A weight of 1 Ib and a lever are used to determine two other weights (see the figure below). Given $w_{3}=3 \mathrm{Ib}$, the lever balances when $\mathrm{d}_{3}=31 \mathrm{~m}, \mathrm{~d}_{1}=5 \mathrm{~m}$ and $\mathrm{d}_{2}=4 \mathrm{~m}$ and when $\mathrm{d}_{3}=33 \mathrm{~m}, \mathrm{~d}_{1}=3 \mathrm{~m}$ and $\mathrm{d}_{2}=6 \mathrm{~m}$. Determine the weights w_{1} and w_{2} (write all details)

Question 3

i. Solve the equation by completing the square: A box with a square base and no top is to be made from a square piece of tin by cutting out a 3 -inch square from each corner and folding up the sides. If the box is to hold $48 \mathrm{in}^{3}$, what size piece of tin should be used? (write all details)
ii. Find the value of x that satisfies the following system of equations by using Cramer rule (all details are needed)

$$
\begin{array}{r}
2 x-y+3 z=16 \\
3 x+4 y+2 z=7 \\
5 x-67+8 z=47
\end{array}
$$

