AN INTRODUCTION TO

PROBLEM SOLVING
AND PROGRAMMING

WALTER SAVITCH

MORE ABOUT OBJECTS AND
METHODS

Chapter 6

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Objectives

- Define and use constructors
- Write and use static variables and methods
- Write and use overloaded methods

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

AN INTRODUCTION TO

PROBLEM SOLVING
AND PROGRAMMING

WALTER SAVITCH

CONSTRUCTORS

Cho6.1

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Constructors: Outline

- Defining Constructors
- Calling Methods from Constructors
- Calling a Constructor from Other Constructors

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Defining Constructors

- A constructor

- Is a special method called automatically when an
Instance of an object is created with new

ClassName x = new ClassName () ;
- has the same name as the class name.

- can have parameters to specify initial values if desired
- but cannot return values and it is not a void method

- May have multiple definitions
- Each with different numbers or types of parameters

- A class contains at least one constructor.

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Defining Constructors

- Example class to represent rectangles

Rectangle

- width: int
- height: int
- color: String

+ setWidth (int w): void
+ setHeight (int h): void
+ setColor (String c): void
+ getWidth(): int

+ getHeight(): int

+ getColor(): String

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

public class RectangleTest {
public static void main(String[] args) {
Rectangle boxl = new Rectangle();

box1.display();
public class Rectangle { }

private int width; }
private int height;

private String color;
public Rectangle() {

width = 1; \

height = 1;
color = "white"; Default constructor

}

public void setWidth(int w){ width = w;}

public void setHeight(int h){ height = h; }

public void setColor(String c){ color = c; }

public int getWidth() { return width; }

public int getHeight() { return height; }

public String getColor() { return color; }

public void display() {

System.out.println("Width= "+width+", Height= "+height+", Color= "+
color);}}

Width= 1, Height= 1, Color= white

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Defining Constructors

- Constructor without parameters is the default
constructor

- Java will define this automatically, but only if the
class designer does not define any constructors

- If you do define a constructor, Java will not
automatically define a default constructor, but you
can still add one.

- Usually default constructors are not included in
class diagrams (UML)

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

public class Rectangle {
private int width;
private int height;
private String color;
public Rectangle() {

width = 1;

height = 1;

color = "white";}
public Rectangle(int w, int h, String c) {

width = w;

height = h; =

color = c;} — Don’t forget to check the validity
public Rectangle(int w, int h) _{— of recerved values

width = W;
height = h; }// rest of methods

¥

public class RectangleTest {
public static void main(String[] args) {
Rectangle boxl = new Rectangle(5, 10 , "Black");
box1.display();
Rectangle box2 = new Rectangle(3, 20);
box2.display();}}

Width= 5, Height= 10, Color= Black
Width= 3, Height= 20, Color= null

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Calling Methods from Other Constructors

public class Rectangle {

private int width;

private int height;

private String color;

public Rectangle() {
width = 1;
height = 1;
color = "white";}

public Rectangle(int w, int h, String c
setWidth(w); <
setHeight(h);
setColor(c);

}// rest of methods

t):hgck/hg validity of received values can
be done in setters methods

}

public class RectangleTest {
public static void main(String[] args) {
Rectangle boxl = new Rectangle(5, 10, "Black");
box1.display();}}

Width= 5, Height= 10, Color= Black

public class Rectangle {
private int width;
private int height;
private String color;
public Rectangle() {

width = 1;
height = 1;
color = "white";
}
public Rectangle(int w, int h,
String c) {
setWidth(w);
setHeight(h);
} setColor(c); You cannot use an existing object to
// rest of methods call a constructor
h public class RectangleTest {
public static void main(String[] args) {
Compilation Rectangle boxl = new Rectangle();
error »box1.Rectangle(5, 10, "Black");
}
}

To change the instance values of an object after it has been created, you should call one of
the set methods.

public class Rectangle {
private int width;
private int height;
private String color;

public Rectangle(int w, int h,

String c) {
setWidth(w);
setHeight(h);
setColor(c);

}

// rest of methods

public class RectangleTest {
public static void main(String[] args) {
» Rectangle boxl = new Rectangle();
box1.display();

Compilation error:
constructor Rectangle() is
undefined! }

If you do define a constructor, Java will not automatically define a
default constructor

Constructors & set methods calling a private method

public class Rectangle {
private int width;
private int height;
private String color;

public Rectangle(int w, int h, String c) { set(w, h, c); }
public Rectangle(int w, int h) { set(w, h, "White"); }
public Rectangle(String c) { set(1, 1, c); }

public Rectangle() { set(1,1, "White"); }

public void setWidth(int w){ set(w, height, color);}
public void setHeight(int h) { set(width, h, color); }
public void setColor(String c){ set(width, height, c); }
private void set(int w, int h, String c) {

width = w;

height = h;

color = c;}

// rest of methods

Calling Constructor from Other
Constructors

public class Rectangle {
private int width;
private int height;
private String color;

public Rectangle(int w, int h, « In the other constructors use the this

String c o
Wﬁdt?\ i " reference to call initial constructor
heisht = B, * Constructor call must be the first
8 ’ statement in a constructor
color = c;
}

public Rectangle(int w, int h) {
this(w, h, "White"); }

public Rectangle(String c) {
this(1, 1, c); }

public Rectangle() {
this(1,1, "White"); }

// rest of methods

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Copy Constructor

- Sometimes we want to create an exact copy
(duplicate) of an existing object, such that the
changes made in this copy does not reflect on the
original object.

- Copy constructor is special type of constructor

- Takes an existing object of the same class as
parameter.

- Coplies each field (attribute) of the existing object into
the new object.

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Example: Constructor with No-Parameter

A. The instance P1
public class Person variable is allocated
{ in memory.

String name;

int age; B. The object is name [“" |
// Constructor created with initial state age 0]
public Person() {

A\ 44

name = ;
age = 07} C. The reference of the
} object created in B is P1
assigned to the

variable.

name [“" |
age [0 |

State of Memory

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Example: Class with Multiple Constructors

Public class Person
{

String name;

int age;

// Constructor
public Person() {

A\Y 144

name = ;
age = 05}
public Person (Person other)
{ name = other.name;
age = other.age; }

public Person(String n, 1int a)
{ name = n;
age = a; }

P1 = new Person{()
P2 = new Person (“Ahmed”, 27);

P3 = new Person (P2);

A. The constructor declared P 1
with no-parameter is used to /

create the object //

o name
age [0

B. The constructor declared with
parameters is used to create the
object

name lAhmad | | P3
age [27] /

C. Copy constructor

State of Memory

CSsCi11 Adapted from: "JAVA: An Introduction to B8oblem Solving & Programming", 8th Ed.
.

ACTIVITY: CLASS EXAMPLE

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming

Example - Account Class

- Create a Java class based on the following UML :

Account

- number :int
- balance : double

+deposit (double amount) : void
+withdraw(double amount) : void

- The class should:

- Have a default constructor that initializes the attributes to default
values, and another constructor that initializes the data attributes to
given values, and a copy constructor.

- Method deposit will add to balance
- Method withdraw will reduce the balance
- Provide set() and get() methods for each attribute.

- In the main() method of the class TestAccount write statements
that will call both constructors and test class Accounts
capabilities.

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Class Account

public class Account
{ // definition of attributes (data)
private int number;
private double balance;
// constructor
public Account ()
{ number=0;
balance=0; }
public Account (int n , double Db)
{ number=n;
balance=b; }
public Account (Account a)
{ number= a.number;
balance= a.balance; }

// definition of operations

public void deposit (double amount)
{ balance = balance + amount;

} //end of deposit

public void withdraw (double
amount)
{ 1f (balance >= amount)
balance = balance - amount;
} //end of withdraw
public void setNumber (int n)
{ number = n;
} //end of setNumber

public void setBalance (double Db)
{ Dbalance=b;
} //end of setBalance

public int getNumber ()
{ return number ;
} //end of getNumber

public double getBalance () {
return balance;

} //end of getBalance } //end of

class

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Class TestAccount

public class TestAccount

{

public static void main (String[] args) {

Account Accountl=new Account ()

Account Account2=new Account (1l,6200);

Account Account3=new Account (Account?);

Accountl. setNumber (2) ;

Accountl. setBalance (4300) ;

Account2. deposit (550) ;

Accountl. withdraw (200);

Account3. deposit (50)

System.out.println (Accountl.getBalance()+ "-" +AccountZ2.getBalance ()+
"-" + Account3.getBalance ());

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

AN INTRODUCTION TO

PROBLEM SOLVING
AND PROGRAMMING

WALTER SAVITCH

STATIC VARIABLES AND
METHODS

Ch 6.2

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Static Variables & Methods: Outline

- Static Variables

- Static Methods
- Dividing the Task of a main Method into Subtasks

- Adding a main Method to a class (optional)
- Predefined methods
- Wrapper Classes (optional)

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Static Variables

- They are variables declared as static

- They are shared by all objects of a class
- Only one instance of the variable exists
- It can be accessed by all instances of the class via the class
name or the object name

- Static variables are also called class variables
- Contrast with instance variables
- Note: Do not confuse class variables with variables of a class

type
- Both static (class) variables and instance variables are
sometimes called fields or data members or attributes

- Underline static variables in UML diagram

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Static Variables

- Values of variables declared:
- static final cannot be changed, they are
constants
- static (without £inal) can be changed

- A common examples of static attributes is to have
a variable that keeps track of how many objects
of a class have been created.

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Constructor and Static attribute

public class Person {

String name;
int age;
public static int numofPerson=0;

// Constructor
public Person{()
{ name = ™ 7;
age = 0y
numofPerson++; }

public Person(String n , int a)
{ name = n;

age = ay

numofPerson++; }

} // end class Person

public static void
main(String[] args)

System.out.println

(Person.numofPerson) ;

Person Pl = new Person|();
Person P2 = new

Person (Y“ahmed”, 27);

System.out.println

(Person.numofPerson) ;

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Constructor and Static attribute

public static void main(stringl]
args)

{

Person Pl = new Person{();
Person P2 = new Person (“ahmed”,
27);

}

numofPerson
0

=

P1)
hame [“" |
age [0]
P2 |
Person
name
age 27

State of Memory

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

class Course { Course
// attributes -
public String studentName; // Instance variagles +studentName: Strmg
public String courseCode ; // Instance variables . .
public static int studentNumber; // Class variables +courseCode: Strmg
) +studentNumber:int

|

CourseRegistration

public class CourseRegistration {
public static void main (String[] args) {

Course coursel, course?Z;

//Create and assign values to coursel

coursel = new Course(); Course.studentNumber = 1;

coursel.courseCode= “CSC1127;

coursel.studentName= “Majed AlKebir";

//Create and assign values to course2

course?2 = new Course(); Course.studentNumber ++;

course2.courseCode= “CSC107”;

course?.studentName= “Fahd AlAmri’;

System.out.println (coursel.studentName + " has the course “+
coursel.courseCode + “ 7 + coursel.studentNumber) ;

System.out.println (course2.studentName + " has the course “+
course?.courseCode + “ 7 + course2.studentNumber) ;

+main()

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Class Attributes and instance Attributes

coursel
A
Object: Course
studentName Majed AlKehir
course2 courseCode CSC112 — |

>
Object: C
ect: Course tudentNumber

studentName Fahd AlAmri 2

courseCode CSC107

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Static Methods

- Some methods may have no relation to any type
of object

- Example
- Compute max of two integers
- Convert character from upper- to lower case

- Static methods declared in a class
- Can be invoked without using an object
- Instead use the class name

- For example, Math library functions.

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Statlc L.ISTII:I:.‘. 6.6 l.lsing Static Methods

import java.util.Scanner;

LISTING 6.5 Stal /==

Demonstration of using the class DimensionConverter.

S =/
Class of static n Public class DimensionConverterDemo
%/ {
oublic class Dimer public static void main(String[] args)
{ {

Scanner keyboard = new Scanner(System.in);

public static i " L. "
System.out.printin("Enter a measurement in inches: ");

public static double inches = keyboard.nextDouble();
{ double feet =

return fee DimensionConverter.convertInchesToFeet(inches);
} System.out.printin(inches + " inches = " +

feet + " feet.");
public static

{ System.out.print("Enter a measurement in feet: ");
return inc feet = keyboard.nextDouble();
} inches = DimensionConverter.convertFeetToInches(feet);
} System.out.printin(feet + " feet = " +
inches + " inches.");

Enter a measurement in inches: 18
18.0 inches = 1.5 feet.

Enter a measurement in feet: 1.5
1.5 feet = 18.0 inches.

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Mixing Static and Nonstatic Methods

LISTING 6.7 Mixing Static and Non-static Members in
a Class (part 1 of 2)

import java.util.Scanner;

/{**
Class with static and nonstatic members.
*/
public class SavingsAccount
{

private double balance; «— stz bl

public static double interestRate = 0; _ Static variabies
public static int numberOfAccounts = 0;
public SavingsAccount()

{
:3r1nz2i;f;cgéunts++' - Anon ¢ method can
3 ! reference a static variable.
public static void setInterestRate(double newRate)
{ . «————— 7 Astaticmethod can
interestRate = newRate; D
} but not aninstance variable.
public static double getInterestRate()
{

return interestRate;

}

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Mixing Static and Nonstatic Methods

public static int getNumberOfAccounts()

{
return numberOfAccounts;
}
public void deposit(double amount)
{
balance = balance + amount;
}
public double withdraw(do _ _
{ public void addInterest() Anonetatic method can
) , { reference a static varlable
1T (balance >= amount. orcall a static method.
balance = balance double interest = balance * interestRate;
else /7 you can replace interestRate with getInterestRate()
amount = 0; balance = balance + interest;
return amount; }
}
T ————————— public double getBalance()
{
return balance;
}
public static void showBalance(SavingsAccount account)
{
System.out.print(account.getBalance());
} T
} A static method cannot call a nonstatic method

unless it has an object to do so.

CSC111

Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Mixing Static and Nonstatic Methods

LISTING 6.8 Using Static and Non-static Methods

public class SavingsAccountDemo

{

public static void main(String[] args)

{

SavingsAccount.setInterestRate(0.01);
SavingsAccount mySavings = new SavingsAccount();
SavingsAccount yourSavings = new SavingsAccount();
System.out.printin("I deposited $10.75.");
mySavings.deposit(10.75);

System.out.printin("You deposited $75.");
yourSavings.deposit(75.00);

System.out.printin("You deposited $55.");
yourSavings.deposit(55.00);

double cash = yourSavings.withdraw(15.75);

System.out.printin("You withdrew $" + cash + ".");
1T (yourSavings.getBalance() > 100.00)
{

System.out.printin("You received interest.");
yourSavings.addInterest();
}
System.out.printin("Your savings is $" +
yourSavings.getBalance());
System.out.print("My savings is $");
SavingsAccount.showBalance (mySavings);
System.out.printin();
int count = SavingsAccount.getNumberOfAccounts();
System.out.printin("We opened " + count +
" savings accounts today.");

Screen Output

I deposited $10.75.

You deposited $75.

You deposited $55.

You withdrew $15.75.

You received interest.

Your savings is $115.3925

My savings is $10.75

We opened 2 savings accounts today.

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Tasks of main in Subtasks

- Program may have
- Complicated logic
- Repetitive code

- Create static methods to accomplish subtasks

- Consider example code, listing 6.9
amailn method with repetitive code

- Note alternative code, listing 6.10
uses helping methods

../../slides2/CodeSamples3.htm#Listing 6.9
../../slides2/CodeSamples3.htm#Listing 6.10

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Tasks of main In Subtasks

public class RectangleTest {
public static void main(String[] args) {
Rectangle boxl = new Rectangle(5, 10 , "Black");
Rectangle box2 = new Rectangle(5, 10, "Red");

if(box1l.equals(box2))
System.out.println("Math with equals method");
else

Repetitive

System.out.println("Do not match with equals method"); code

// change the color of box 2 to Black
box2.setColor("Black");

if(box1l.equals(box2))
System.out.println("Math with equals method");

else
System.out.println("Do not match with equals method");

}

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Tasks of main In Subtasks

public class RectangleTest {
public static void main(String[] args) {
Rectangle boxl = new Rectangle(5, 10 , "Black");
Rectangle box2 = new Rectangle(5, 10, "Red");

testEqualsMethod(box1, box2); 4 Calling one static
// change the color of box 2 to Black method
box2.setColor("Black");

testEqualsMethod(box1, box2);

}
private static void testEqualsMethod(Rectangle rl1, Rectangle r2) {

if(rl.equals(r2))
System.out.println("Math with equals method");

else
System.out.println("Do not match with equals method");

Do not match with equals method
Math with equals method

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Adding Method main to a Class

* Method main used so far in its own class within
a separate file

e Often useful to include method main within class
definition
* To create objects in other classes
*To be run as a program

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Adding Method main to a Class

public class Rectangle {
private int width;
private int height;
private String color;

// the rest of Rectangle methods here

public static void main(String[] args) {
Rectangle boxl = new Rectangle(5, 10 , "Black");
box1l.display();

}

Remember static methods can’t reference non-static
methods (display(), for example) unless it has an
object to do so.

