
MORE ABOUT OBJECTS AND

METHODS

Chapter 6

Objectives

• Define and use constructors

• Write and use static variables and methods

• Write and use overloaded methods

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 2

CONSTRUCTORS

Ch 6.1

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 3

Constructors: Outline

• Defining Constructors

• Calling Methods from Constructors

• Calling a Constructor from Other Constructors

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 4

Defining Constructors

• A constructor

• is a special method called automatically when an

instance of an object is created with new

ClassName x = new ClassName();

• has the same name as the class name.

• can have parameters to specify initial values if desired

• but cannot return values and it is not a void method

• May have multiple definitions

• Each with different numbers or types of parameters

• A class contains at least one constructor.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 5

Defining Constructors

• Example class to represent rectangles

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 6

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 7

public class Rectangle {
private int width;
private int height;
private String color;
public Rectangle() {

width = 1;
height = 1;
color = "white";

}
public void setWidth(int w){ width = w;}
public void setHeight(int h){ height = h; }
public void setColor(String c){ color = c; }
public int getWidth() { return width; }
public int getHeight() { return height; }
public String getColor() { return color; }
public void display() {
System.out.println("Width= "+width+", Height= "+height+", Color= "+
color);}}

Default constructor

public class RectangleTest {
public static void main(String[] args) {

Rectangle box1 = new Rectangle();
box1.display();

}
}

Sample screen output

Width= 1, Height= 1, Color= white

Defining Constructors

• Constructor without parameters is the default

constructor

• Java will define this automatically, but only if the

class designer does not define any constructors

• If you do define a constructor, Java will not

automatically define a default constructor, but you

can still add one.

• Usually default constructors are not included in

class diagrams (UML)

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 8

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 9

Sample screen output

Don’t forget to check the validity
of received values

public class Rectangle {
private int width;
private int height;
private String color;
public Rectangle() {

width = 1;
height = 1;
color = "white";}

public Rectangle(int w, int h, String c) {
width = w;
height = h;
color = c;}

public Rectangle(int w, int h) {
width = w;
height = h; }// rest of methods

}

Width= 5, Height= 10, Color= Black
Width= 3, Height= 20, Color= null

public class RectangleTest {
public static void main(String[] args) {

Rectangle box1 = new Rectangle(5, 10 , "Black");
box1.display();
Rectangle box2 = new Rectangle(3, 20);
box2.display();}}

Calling Methods from Other Constructors

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 10

Sample screen output

public class RectangleTest {
public static void main(String[] args) {

Rectangle box1 = new Rectangle(5, 10, "Black");
box1.display();}}

Width= 5, Height= 10, Color= Black

public class Rectangle {
private int width;
private int height;
private String color;
public Rectangle() {

width = 1;
height = 1;
color = "white";}

public Rectangle(int w, int h, String c) {
setWidth(w);
setHeight(h);
setColor(c);

}// rest of methods
}

Checking validity of received values can
be done in setters methods

11

public class RectangleTest {
public static void main(String[] args) {

Rectangle box1 = new Rectangle();
box1.Rectangle(5, 10, "Black");

}
}

public class Rectangle {
private int width;
private int height;
private String color;
public Rectangle() {

width = 1;
height = 1;
color = "white";

}
public Rectangle(int w, int h,
String c) {

setWidth(w);
setHeight(h);
setColor(c);

}
// rest of methods

}

You cannot use an existing object to

call a constructor

To change the instance values of an object after it has been created, you should call one of
the set methods.

Compilation
error

12

public class RectangleTest {
public static void main(String[] args) {

Rectangle box1 = new Rectangle();
box1.display();

}
}

public class Rectangle {
private int width;
private int height;
private String color;

public Rectangle(int w, int h,
String c) {

setWidth(w);
setHeight(h);
setColor(c);

}
// rest of methods

}

Compilation error:
constructor Rectangle() is

undefined!

If you do define a constructor, Java will not automatically define a

default constructor

Constructors & set methods calling a private method

13

public class Rectangle {
private int width;
private int height;
private String color;

public Rectangle(int w, int h, String c) { set(w, h, c); }
public Rectangle(int w, int h) { set(w, h, "White"); }
public Rectangle(String c) { set(1, 1, c); }
public Rectangle() { set(1,1, "White"); }

public void setWidth(int w){ set(w, height, color);}
public void setHeight(int h) { set(width, h, color); }
public void setColor(String c){ set(width, height, c); }
private void set(int w, int h, String c) {

width = w;
height = h;
color = c;}
// rest of methods

}

Calling Constructor from Other

Constructors

14

public class Rectangle {
private int width;
private int height;
private String color;
public Rectangle(int w, int h,
String c) {

width = w;
height = h;
color = c;

}
public Rectangle(int w, int h) {

this(w, h, "White"); }
public Rectangle(String c) {

this(1, 1, c); }
public Rectangle() {

this(1,1, "White"); }
// rest of methods

}

• In the other constructors use the this

reference to call initial constructor

• Constructor call must be the first

statement in a constructor

Copy Constructor

• Sometimes we want to create an exact copy

(duplicate) of an existing object, such that the

changes made in this copy does not reflect on the

original object.

• Copy constructor is special type of constructor

• Takes an existing object of the same class as

parameter.

• Copies each field (attribute) of the existing object into

the new object.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 15

Example: Constructor with No-Parameter

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 16

public class Person

{

String name;

int age;

// Constructor

public Person(){

name = “ ”;

age = 0;}

}

P1 = ;

Code

Person P1;

new Person()

A

C

B

State of Memory

P1A. The instance

variable is allocated

in memory.

B. The object is

created with initial state

C. The reference of the

object created in B is

assigned to the

variable.

P1

Person
age 0

“ ” name

Person
age 0

“ ” name

Example: Class with Multiple Constructors

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 17

Public class Person

{

String name;

int age;

// Constructor

public Person(){

name = “ ”;

age = 0;}

public Person(Person other)

{ name = other.name;

age = other.age; }

public Person(String n, int a)

{ name = n;

age = a; }

}

P1 = new Person()

P2 = new Person(“Ahmed”,27);

P3 = new Person(P2);

Code

Person P1 , P2, P3; A

State of Memory

P1
A. The constructor declared

with no-parameter is used to

create the object

B

P2

B. The constructor declared with

parameters is used to create the

object

Personage 0
“ ” name

Person
age 27

Ahmadname

C

P3

Person
age 27

AhmadC. Copy constructor

ACTIVITY: CLASS EXAMPLE

18CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Example - Account Class
• Create a Java class based on the following UML :

• The class should:
• Have a default constructor that initializes the attributes to default

values, and another constructor that initializes the data attributes to
given values, and a copy constructor.

• Method deposit will add to balance

• Method withdraw will reduce the balance

• Provide set() and get() methods for each attribute.

• In the main() method of the class TestAccount write statements
that will call both constructors and test class Accounts
capabilities.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 19

Account

- number :int

- balance : double

+deposit (double amount) : void

+withdraw(double amount) : void

public class Account

{ // definition of attributes (data)

private int number;

private double balance;

// constructor

public Account ()

{ number=0;

balance=0; }

public Account (int n , double b)

{ number=n;

balance=b; }

public Account (Account a)

{ number= a.number;

balance= a.balance; }

// definition of operations

public void deposit (double amount)

{ balance = balance + amount;

} //end of deposit

public void withdraw(double

amount)

{ if (balance >= amount)

balance = balance – amount;

} //end of withdraw

public void setNumber (int n)

{ number = n;

} //end of setNumber

public void setBalance (double b)

{ balance=b;

} //end of setBalance

public int getNumber()

{ return number ;

} //end of getNumber

public double getBalance() {

return balance;

} //end of getBalance } //end of

class

Class Account

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 20

Class TestAccount

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 21

public class TestAccount

{

public static void main(String[] args) {

Account Account1=new Account();

Account Account2=new Account(1,6200);

Account Account3=new Account(Account2);

Account1. setNumber (2) ;

Account1. setBalance (4300) ;

Account2. deposit (550) ;

Account1. withdraw(200);

Account3. deposit (50)

System.out.println(Account1.getBalance()+ "-" +Account2.getBalance()+

"-" + Account3.getBalance());

}

}

STATIC VARIABLES AND

METHODS

Ch 6.2

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 22

Static Variables & Methods: Outline

• Static Variables

• Static Methods

• Dividing the Task of a main Method into Subtasks

• Adding a main Method to a class (optional)

• Predefined methods

• Wrapper Classes (optional)

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 23

Static Variables

• They are variables declared as static

• They are shared by all objects of a class
• Only one instance of the variable exists

• It can be accessed by all instances of the class via the class

name or the object name

• Static variables are also called class variables
• Contrast with instance variables

• Note: Do not confuse class variables with variables of a class

type

• Both static (class) variables and instance variables are

sometimes called fields or data members or attributes

• Underline static variables in UML diagram

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 24

Static Variables

• Values of variables declared:

• static final cannot be changed, they are

constants

• static (without final) can be changed

• A common examples of static attributes is to have

a variable that keeps track of how many objects

of a class have been created.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 25

Constructor and Static attribute

public class Person {

String name;

int age;

public static int numofPerson=0;

// Constructor

public Person()

{ name = “ ”;

age = 0;

numofPerson++; }

public Person(String n , int a)

{ name = n;

age = a;

numofPerson++; }

} // end class Person

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 26

...

public static void

main(String[] args)

{

System.out.println

(Person.numofPerson);

Person P1 = new Person();

Person P2 = new

Person(“ahmed”, 27);

System.out.println

(Person.numofPerson);

}

...

Constructor and Static attribute

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 27

P1 = new Person()

P2 = new Person(“Ahmed”,27);

Code

Person P1 , P2; A

State of Memory

P1

Person

27

Ahmed

B

P2

Person

age 0

“ ”

name

age

name

0

numofPerson

A

1

2

B

public static void main(string[]

args)

{

Person P1 = new Person();

Person P2 = new Person (“ahmed”,

27);

}

class Course {
// attributes
public String studentName; // Instance variables
public String courseCode ; // Instance variables
public static int studentNumber; // Class variables

}

public class CourseRegistration {

public static void main(String[] args) {

Course course1, course2;

//Create and assign values to course1

course1 = new Course(); Course.studentNumber = 1;

course1.courseCode= “CSC112”;
course1.studentName= “Majed AlKebir“;
//Create and assign values to course2

course2 = new Course(); Course.studentNumber ++;

course2.courseCode= “CSC107”;
course2.studentName= “Fahd AlAmri”;
System.out.println(course1.studentName + " has the course “+

course1.courseCode + “ ” + course1.studentNumber);

System.out.println(course2.studentName + " has the course “+
course2.courseCode + “ ” + course2.studentNumber);

}

}

Course

+studentName: String
+courseCode: String

+studentNumber:int

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 28

+main()

CourseRegistration

Class Attributes and instance Attributes

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 29

Object: Course

studentName

CSC112courseCode

Object: Course

studentName

CSC107courseCode

course2

course1

Majed AlKebir

Fahd AlAmri

studentNumber

2

Static Methods

• Some methods may have no relation to any type
of object

• Example
• Compute max of two integers

• Convert character from upper- to lower case

• Static methods declared in a class
• Can be invoked without using an object

• Instead use the class name

• For example, Math library functions.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 30

Static Methods

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 31

Sample

screen

output

Mixing Static and Nonstatic Methods

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 32

Mixing Static and Nonstatic Methods

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 33

Mixing Static and Nonstatic Methods

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 34

Tasks of main in Subtasks

• Program may have

• Complicated logic

• Repetitive code

• Create static methods to accomplish subtasks

• Consider example code, listing 6.9

a main method with repetitive code

• Note alternative code, listing 6.10

uses helping methods

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 35

../../slides2/CodeSamples3.htm#Listing 6.9
../../slides2/CodeSamples3.htm#Listing 6.10

Tasks of main in Subtasks
CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 36

public class RectangleTest {
public static void main(String[] args) {
Rectangle box1 = new Rectangle(5, 10 , "Black");
Rectangle box2 = new Rectangle(5, 10, "Red");

if(box1.equals(box2))
System.out.println("Math with equals method");

else
System.out.println("Do not match with equals method");

// change the color of box 2 to Black
box2.setColor("Black");

if(box1.equals(box2))
System.out.println("Math with equals method");

else
System.out.println("Do not match with equals method");

}
}

Repetitive

code

public class RectangleTest {
public static void main(String[] args) {
Rectangle box1 = new Rectangle(5, 10 , "Black");
Rectangle box2 = new Rectangle(5, 10, "Red");

testEqualsMethod(box1, box2);
// change the color of box 2 to Black
box2.setColor("Black");
testEqualsMethod(box1, box2);

}
private static void testEqualsMethod(Rectangle r1, Rectangle r2) {

if(r1.equals(r2))
System.out.println("Math with equals method");

else
System.out.println("Do not match with equals method");

}
}

Tasks of main in Subtasks
CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 37

Do not match with equals method
Math with equals method

Calling one static

method

Sample screen output

Adding Method main to a Class

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 38

Adding Method main to a Class

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 39

