Chapter 8

First Order Logic

Introduction

has limited expressive power unlike natural
language

: cannot say "pits cause breezes in adjacent squares®, except
by writing one sentence for each square
*Bi1 & (P12 V Pyq)

* Question: How can we write one sentence only that can be applied to
a group of objects?

First order logic (FOL)

Examples of things we can say:

e All men are mortal:
* Vx Man(x) = Mortal(x)

* Everybody loves somebody
* Vx 3y Loves(x,y)

* The meaning of the word “above”
* VxVyabove(x,y) & (on(x,y) V 3z (on(x,z) A above(z,y))

First Order Logic

* AKA first-order predicate calculus
e First-order logic assumes the world contains:
1. Objects (noun): people, houses, numbers, colors, ...

2. Predicates/ Relations (verbs that relate objects) (return T or F):
e Unary: red, round, prime (properties)

* N-ary: brother of, bigger than, part of

3. Functions (verbs that relate objects) (return an object):
 Example: Sqgrt, Plus, Father

e Afunction is a relation that has one value for one input

Models for first-order logic

* Models: the formal
structures that constitute
the possible worlds under
consideration

person
king
brother

* Domain of a model is the
set of objects or domain
elements it contains

fl leg

Figure 8.2 A model containing five objects, two binary relations (brother and on-head), three
unary relations (person, king, and crown), and one unary function (left-leg).

5

Syntax of FOL: Basic elements

Element Example

Constants John, 2, Black
Predicates Brother, >
Functions Sqrt, Father
Variables x,y,a,b

Connectives

-, =, A\, V, <=

Equality

Quantifiers

v,

Syntax of FOL: Atomic sentences

* Term: is a logical expression that refers to an object

Term — Function(Term,...)

e |sa f(term,, ..., term) or or | Constant
| Variable
* Example: : John, . LeftLeg(John)
* Atomic sentence: is a of terms pred(term,, ..., term,) or
term, = term,
e Man (X) AtomicSentence — Predicate | Predicate(Term,...) | Term = Term

Brother(John, Richard)
> (3,1)

cx =y

Father(Ali) = Ahmed

Syntax of FOL: Complex sentences

« Complex sentences: are made from atomic sentences using
1. Connectives: =5,5;A S5,,5;v 5, 5,=5, 5,85,

2. Quantifiers: Universal quantification (V), Existential quantification (3)
* Example: Vx Man(x) = Mortal(x)

ComplexSentence — (Sentence)
- Sentence

Sentence N\ Sentence

Sentence => Sentence

* Examples:
- > (1,2)v < (1,2)

Sentence < Sentence

> (1,2)A= >(1,2)
* Sibling(John, Richard) = Sibling(Richard, John)

|
|
| Sentence V Sentence
|
|
|

Quantifier Variable, ... Sentence

Syntax of FOL: Quantifiers

* Quantifiers: Universal (V) and Existential (3)

* Allow us to express properties of collections of objects instead of
enumerating objects by name

e Universal (V): “for all”:
* V < variables > < sentence >
e Vx At(x,KSU) = Smart(x)
 Existential (3) : “there exists”

e 3 < variables > < sentence >
edx At(x,PNU) A Smart(x)

Syntax of FOL: summary

Sentence
AtomicSentence

ComplexSentence

Term

Quantifier
Constant
Variable
Predicate

Function

OPERATOR PRECEDENCE

—
—

—

— — 4

141l d

AtomicSentence | ComplexSentence

Predicate | Predicate(Term,...) | Term = Term

(Sentence)

- Sentence

Sentence N\ Sentence
Sentence V Sentence
Sentence = Sentence
Sentence < Sentence

Quantifier Variable, ... Sentence

Function(Term,...)
Constant
Variable

V| 3

Al Xy | John | ---

al z|s| -

True | False| After | Loves | Raining| ---
Mother | LeftLeg | ---

_|!:7 /\!V'J:;’!@

10

Syntax of FOL: Quantifiers

* = is the main connective with * A is the main connective with
(V) (3)
* Common Mistake: * Common Mistake:
e Vx At(x,KSU) N Smart(x) * dx At(x,PNU) = Smart(x)
* True when everyone is at KSU and * |t is also true for anyone not in

everyone is smart PNU!

Syntax of FOL: Properties of quantifiers

VxVvyisthesameasV yVx

Jdx dyisthesameasdy3dx

3 x V yisnotthe same as
- 3xVy Loves(x,y)

“There is a person who loves everyone in the world”

Loves(x,y)
“Everyone in the world is loved by at least one person” Ve P = —-dx P
+ Quantifier duality: each can b d using the oth ve £o=3r ok
Quantifier duali Y. €aCh Can pPe expressed using the other Ve P = -3z =P
* Vx Likes(x,IceCream) = =3 x -—Likes(x,IceCream) dx P = —Vz -P

« 3x Likes(x,Broccoli) = =V x =Likes(x, Broccoli)

Using FOL: The kinship domain

* Objects in the kinship domain are people
 Two unary predicates: Male and Female

* Kinship relations are represented by binary predicates: Parent,
Sibling, Brother, Sister, Child, Daughter, Son, Spouse, Wife,
Husband, Grandparent, Grandchild, Cousin, Aunt, and Uncle.

e Use functions for Mother and Father, because every person has
exactly one of each of these

Using FOL: The kinship domain

One’s husband is one’s male spouse:
Vw, h Husband(h,w) & Male(h) A Spouse(h,w)

Male and female are disjoint categories:
Vx Male(x) & —Female(x)

Parent and child are inverse relations:
Vp,c Parent(p,c) < Child(c,p)

A grandparent is a parent of one’s parent:
Vg, c Grandparent(g,c) < 3p Parent(g,p) A Parent(p, c¢)

* Asibling is another child of one’s parents:
Vx,y Sibling(x,y) < (x # y) A3dp Parent(p,x) A Parent(p,y)

Chapter 9

Inference in First Order Logic

Inference in FOL

* Purpose of inference: KB E a ?
* First Approach: Reduce FOL to PL and then apply PL inference

* Inference by model checking is in general impossible in FOL: the
models are generally infinite or at least extremely large.

* The KB propositionalized is not equivalent to the original KB, but
entailment is preserved.

* Every FOL KB can be propositionalized so as to preserve entailment

* Inference by reduction to PL: propositionalize KB and query, apply
inference rules, return result.

Converting FOL to PL: Substitution

Given a sentence a and binding list o, the result of
applying the substitution o to « is denoted by Subst(o, a)

* Example:
o = {x/Ali,y/Fatima}
oo = Likes(x,y)

Subst({x/Ali,y/Fatima}, Likes(x,y)) = Likes(Ali, Fatima)

Converting FOL to PL: Converting V

given a universal generalization (an V
sentence), the rule allows you to infer any instance of that
generalization.

e Substitute the variable in a universally quantified sentence by a
ground term. A ground term is a term with no variables.

* Example: Vx King(x) A Greedy(x) = Evil(x) yields:
* King(John) A Greedy(John) = Evil(John)
* King(Richard) A Greedy(Richard) = Evil(Richard)
 King(Father(John)) A Greedy(Father(John)) = Evil(Father(John))

* Ul can be applied several times to add new sentences

Converting FOL to PL: Converting 4

For any sentence «, variable v, and
constant symbol k that does not appear elsewhere in the knowledge
base (k is called a Skolem): replace v by k

* Example: 3x Crown(x) A OnHead(x,John) yields:
* Crown(C1) A OnHead(C1,]John)

* Provided C1 is a new constant symbol, called a Skolem constant

* El can be applied once to replace the existential sentence

Example: Reduction to propositional inference

KB v x King(x) A Greedy(x) = Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)

* Instantiating the universal sentence in all possible ways, we have:

New King(John) A Greedy(John) = Evil(John)
KB King(Richard) A Greedy(Richard) = Evil(Richard) » irrelevant substitution
King(John)
Greedy(John)
Brother(Richard, John)

* The new KB is propositionalized.

Propositionalization

* Propositionalization can be made completely general: every FOL KB
and query can be propositionalized in such a way that entailment is
preserved.

* Problem: when the KB includes a function symbol, the set of possible
ground-term substitutions is infinite!

* Example: KB contains Father symbol, then infinitely many nested
terms (Father(Father(Father(John)))) can be constructed

* Propositional algorithms will have difficulty with an infinitely large set
of sentences

Inference in FOL: Inference rules

* Second approach: Instead of translating KB to PL, we can make the
inference rules work in FOL.

* For example, given the KB, can we prove Evil(John)?

V x King(x) A Greedy(x) = Evil(x)
King(John)
Greedy(John)
* The inference that John is evil works like this:
* Find some x such that x is a king and x is greedy,

 And then infer that x is evil.

* It is intuitively clear that we can substitute {x/John} and obtain that
Evil(John)

Inference in FOL: Inference rules

e What if we have:

V x King(x) A Greedy(x) = Evil(x)
King(John)
Vy Greedy(y)

* Itis intuitively clear that we can substitute {x/John, y/John} and obtain that
Evil(John)

* King(x) is unified with King(john)
* Greedy(John) is unified with Greedy(y)

Inference in FOL: Generalized Modus Ponens

* For atomic sentences p;, p;, q, and substitution 8, such that SUBST (6, p;)
= SUBST (0, p;), for all i:

D1, D2y s Pns (PIAD2 A ADp = q)
SUBST(6,p)

* All variables are assumed universally quantified.

p; is King(John) pq is King (x)
Vx King(x) N Greedy(x) = Evil(x) p’ is Greedy(y) p, is Greedy(x)
King(John) - . |
V y Greedy(y) 6 is {x/John,y/John} q is Evil(x)

Subst(0, q) is Evil(John)

Inference in FOL: Unification

 The UNIFY algorithm takes two sentences and returns a unifier for
them if one exists:

UNIFY (p,q) = 6 where SUBST (6,p) = SUBST (0, q)

 \We can make the inference if we can find a substitution such that
King(x) and Greedy(x) match King(John) and Greedy(y):
{x/John,y/John} works

Knows(John, x) Knows(John, Jane) {x/]ane}
Knows(John, x) Knows(y, 0]) {x/0],y/]John}
Knows(John, x) Knows(y, Mother(y)) {y/John,x/Mother(John)}}

Knows(John, x) Knows(x, 0]) {fail}

25

Inference in FOL: Resolution

[y V-V [, my V-V my,

SUbSt(Q, ll VeV li—l \Y li+1 VeV lk \Y m1 VeV mj_l \Y mj+1 Vo an)

where 8 = Unify(l;, -m;)

—Rich(x) VUnhappy(x), Rich(Ken)
Unhappy(Ken)

* Example: ,with8 = {x/Ken}

* Apply resolution stepsto CNF(KB A —a); complete for FOL

Students

Inference in FOL: Forward chaining

* When a new fact P is added to the KB:
For each rule s.t. P unifies with a premise
1f the other premises are known then
add the conclusion to the KB

continue chaining

* Forward chaining is data-driven, for example, inferring conclusions from
incoming percepts

Students

Forward chaining example

Faster(Bob, Steve)

R3
{x/Bob,y/Pat} {y/Pat, z/Steve}
Faster(Bob, Pat) Faster(Pat, Steve)
R1 R2
{x/Bob} {y/Pat} {z/Steve}
Buf falo(Bob) Pig(Pat) Slug(Steve)
F1 F2 F3

Rules

1. Buffalo(x) N Pig(y) = Faster(x,y)

2. Pig(y) ASlug(z) = Faster(y, z)

3. Faster(x,y) A Faster(y,z) = Faster(x, z)

Facts
1. Buffalo(Bob)
2. Pig(Pat)

3. Slug(Steve)

New facts

4. Faster(Bob, Pat)

5. Faster(Pat, Steve)
6. Faster (Bob, Steve)

Students

Inference in First Order Logic: Backward chaining

e Backward chaining starts with a hypothesis (query) and work
backwards, according to the rules in the knowledge base until
reaching confirmed findings or facts.

R1. Pig(y) A Slug(z) = Faster (y,z)

R2. Slimy(z) A Creeps(z) = Slug(z) Query: | Faster(Pat, Steve)
F1. Pig(Pat) '

F2. Slimy(Steve) /N/Pat’ z/Steve}
F3. Creeps(Steve)

Pig(Pat) Slug(Steve)
F1 4 Ami/Steve}
Slimy(Steve) Creeps(Steve)

F2 {} F3 {}

	Slide 1: Chapter 8
	Slide 2: Introduction
	Slide 3: First order logic (FOL)
	Slide 4: First Order Logic
	Slide 5: Models for first-order logic
	Slide 6: Syntax of FOL: Basic elements
	Slide 7: Syntax of FOL: Atomic sentences
	Slide 8: Syntax of FOL: Complex sentences
	Slide 9: Syntax of FOL: Quantifiers
	Slide 10: Syntax of FOL: summary
	Slide 11: Syntax of FOL: Quantifiers
	Slide 12: Syntax of FOL: Properties of quantifiers
	Slide 13: Using FOL: The kinship domain
	Slide 14: Using FOL: The kinship domain
	Slide 15: Chapter 9
	Slide 16: Inference in FOL
	Slide 17: Converting FOL to PL: Substitution
	Slide 18: Converting FOL to PL: Converting for all
	Slide 19: Converting FOL to PL: Converting there exists
	Slide 20: Example: Reduction to propositional inference
	Slide 21: Propositionalization
	Slide 22: Inference in FOL: Inference rules
	Slide 23: Inference in FOL: Inference rules
	Slide 24: Inference in FOL: Generalized Modus Ponens
	Slide 25: Inference in FOL: Unification
	Slide 26: Inference in FOL: Resolution
	Slide 27: Inference in FOL: Forward chaining
	Slide 28: Forward chaining example
	Slide 29: Inference in First Order Logic: Backward chaining

