
Chapter 8

First Order Logic



Introduction

• Propositional logic has limited expressive power unlike natural 
language

• Example: cannot say "pits cause breezes in adjacent squares“, except 
by writing one sentence for each square

• 𝐵1,1 ⇔ (𝑃1,2 ∨ 𝑃2,1)

• Question: How can we write one sentence only that can be applied to 
a group of objects?
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First order logic (FOL)

Examples of things we can say:

• All men are mortal:

• ∀𝑥 𝑀𝑎𝑛(𝑥)  ⇒  𝑀𝑜𝑟𝑡𝑎𝑙(𝑥)

•  Everybody loves somebody

• ∀𝑥 ∃𝑦 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦)

•  The meaning of the word “above”

• ∀𝑥 ∀𝑦 𝑎𝑏𝑜𝑣𝑒(𝑥, 𝑦) ⇔ (𝑜𝑛(𝑥, 𝑦)  ∨  ∃𝑧 (𝑜𝑛(𝑥, 𝑧) ∧ 𝑎𝑏𝑜𝑣𝑒(𝑧, 𝑦))
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First Order Logic

• AKA first-order predicate calculus 

• First-order logic assumes the world contains:

1. Objects (noun): people, houses, numbers, colors, …

2. Predicates/ Relations (verbs that relate objects) (return T or F): 

• Unary: red, round, prime (properties) 

• N-ary: brother of, bigger than, part of

3. Functions (verbs that relate objects) (return an object):

• Example: Sqrt, Plus, Father

• A function is a relation that has one value for one input
4



Models for first-order logic
• Models: the formal 

structures that constitute 
the possible worlds under 
consideration 

• Domain of a model is the 
set of objects or domain 
elements it contains 
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Syntax of FOL: Basic elements
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Element Example

Constants John, 2, Black

Predicates Brother, >

Functions Sqrt, Father

Variables 𝑥, 𝑦, 𝑎, 𝑏

Connectives , , , , 

Equality : =

Quantifiers ,  



Syntax of FOL: Atomic sentences

• Term: is a logical expression that refers to an object

• Is a function 𝑓(𝑡𝑒𝑟𝑚1, … , 𝑡𝑒𝑟𝑚𝑛) or constant or variable 

• Example: constant term: John, function: LeftLeg(John)

• Atomic sentence: is a predicate of terms 𝑝𝑟𝑒𝑑(𝑡𝑒𝑟𝑚1, … , 𝑡𝑒𝑟𝑚𝑛) or 
𝑡𝑒𝑟𝑚1 = 𝑡𝑒𝑟𝑚2

• 𝑀𝑎𝑛(𝑥)

• 𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛, 𝑅𝑖𝑐ℎ𝑎𝑟𝑑)

• >  (3, 1)

• 𝑥 =  𝑦

• 𝐹𝑎𝑡ℎ𝑒𝑟(𝐴𝑙𝑖) = 𝐴ℎ𝑚𝑒𝑑
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Syntax of FOL: Complex sentences

• Complex sentences: are made from atomic sentences using 

1. Connectives: 𝑆, 𝑆1 
 𝑆2, 𝑆1 

 𝑆2, 𝑆1 
 𝑆2, 𝑆1 


 
𝑆2

2. Quantifiers: Universal quantification (∀), Existential quantification (∃) 

• Example: ∀𝑥 𝑀𝑎𝑛(𝑥) ⇒ 𝑀𝑜𝑟𝑡𝑎𝑙(𝑥)

• Examples:

• > (1,2)  ≤  (1,2)

• > (1,2)   > (1,2)

• 𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝐽𝑜ℎ𝑛, 𝑅𝑖𝑐ℎ𝑎𝑟𝑑)  𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝐽𝑜ℎ𝑛) 
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Syntax of FOL: Quantifiers

• Quantifiers: Universal (∀) and Existential (∃)

• Allow us to express properties of collections of objects instead of 
enumerating objects by name

• Universal (∀): “for all”: 

• ∀ < 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 > < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 >

• ∀𝑥 𝐴𝑡(𝑥, 𝐾𝑆𝑈)  ⇒  𝑆𝑚𝑎𝑟𝑡(𝑥)

• Existential (∃) : “there exists” 

• ∃ < 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 > < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 >

• ∃ 𝑥 𝐴𝑡(𝑥, 𝑃𝑁𝑈)  ∧  𝑆𝑚𝑎𝑟𝑡(𝑥)
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Syntax of FOL: summary 
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Syntax of FOL: Quantifiers

• ⇒ is the main connective with 
(∀)

• Common Mistake:
• ∀𝑥 𝐴𝑡(𝑥, 𝐾𝑆𝑈)  ∧  𝑆𝑚𝑎𝑟𝑡(𝑥)

• True when everyone is at KSU and 
everyone is smart

• ∧  is the main connective with 
(∃)

• Common Mistake: 
• ∃ 𝑥 𝐴𝑡(𝑥, 𝑃𝑁𝑈)  ⇒  𝑆𝑚𝑎𝑟𝑡(𝑥)

• It is also true for anyone not in 
PNU!
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Syntax of FOL: Properties of quantifiers

• ∀ 𝑥 ∀ 𝑦 is the same as ∀ 𝑦 ∀ 𝑥

• ∃ 𝑥 ∃ 𝑦 is the same as ∃ 𝑦 ∃ 𝑥

• ∃ 𝑥 ∀ 𝑦 is not the same as ∀ 𝑦 ∃ 𝑥:

• ∃ 𝑥 ∀ 𝑦 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦)

 “There is a person who loves everyone in the world”

• ∀ 𝑦 ∃ 𝑥 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦)

 “Everyone in the world is loved by at least one person”

• Quantifier duality: each can be expressed using the other

• ∀ 𝑥 𝐿𝑖𝑘𝑒𝑠(𝑥, 𝐼𝑐𝑒𝐶𝑟𝑒𝑎𝑚)  ≡  ¬ ∃ 𝑥 ¬𝐿𝑖𝑘𝑒𝑠(𝑥, 𝐼𝑐𝑒𝐶𝑟𝑒𝑎𝑚)

• ∃ 𝑥 𝐿𝑖𝑘𝑒𝑠(𝑥, 𝐵𝑟𝑜𝑐𝑐𝑜𝑙𝑖)  ≡  ¬ ∀ 𝑥 ¬𝐿𝑖𝑘𝑒𝑠(𝑥, 𝐵𝑟𝑜𝑐𝑐𝑜𝑙𝑖)
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Using FOL: The kinship domain

• Objects in the kinship domain are people 

• Two unary predicates: 𝑀𝑎𝑙𝑒 and 𝐹𝑒𝑚𝑎𝑙𝑒 

• Kinship relations are represented by binary predicates: 𝑃𝑎𝑟𝑒𝑛𝑡, 
𝑆𝑖𝑏𝑙𝑖𝑛𝑔, 𝐵𝑟𝑜𝑡ℎ𝑒𝑟, 𝑆𝑖𝑠𝑡𝑒𝑟, 𝐶ℎ𝑖𝑙𝑑, 𝐷𝑎𝑢𝑔ℎ𝑡𝑒𝑟, 𝑆𝑜𝑛, 𝑆𝑝𝑜𝑢𝑠𝑒, 𝑊𝑖𝑓𝑒, 
𝐻𝑢𝑠𝑏𝑎𝑛𝑑, 𝐺𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡, 𝐺𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑, 𝐶𝑜𝑢𝑠𝑖𝑛, 𝐴𝑢𝑛𝑡, and 𝑈𝑛𝑐𝑙𝑒.

• Use functions for 𝑀𝑜𝑡ℎ𝑒𝑟 and 𝐹𝑎𝑡ℎ𝑒𝑟, because every person has 
exactly one of each of these
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Using FOL: The kinship domain

• One’s husband is one’s male spouse: 

∀𝑤, ℎ 𝐻𝑢𝑠𝑏𝑎𝑛𝑑(ℎ, 𝑤)  ⇔  𝑀𝑎𝑙𝑒(ℎ) ∧ 𝑆𝑝𝑜𝑢𝑠𝑒(ℎ, 𝑤)

• Male and female are disjoint categories: 

∀𝑥 𝑀𝑎𝑙𝑒(𝑥)  ⇔  ¬𝐹𝑒𝑚𝑎𝑙𝑒(𝑥)

• Parent and child are inverse relations: 

∀𝑝, 𝑐 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝, 𝑐)  ⇔  𝐶ℎ𝑖𝑙𝑑(𝑐, 𝑝)

• A grandparent is a parent of one’s parent: 

∀𝑔, 𝑐 𝐺𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡(𝑔, 𝑐)  ⇔  ∃𝑝 𝑃𝑎𝑟𝑒𝑛𝑡(𝑔, 𝑝) ∧ 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝, 𝑐)

• A sibling is another child of one’s parents: 

∀𝑥, 𝑦 𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝑥, 𝑦)  ⇔ 𝑥 ≠ 𝑦 ∧ ∃𝑝 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝, 𝑥) ∧ 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝, 𝑦)
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Chapter 9

Inference in First Order Logic



Inference in FOL

• Purpose of inference: 𝐾𝐵 ⊨ 𝛼 ?

• First Approach: Reduce FOL to PL and then apply PL inference

• Inference by model checking is in general  impossible in FOL: the 
models are generally infinite or at least extremely large.

• The KB propositionalized is not equivalent to the original KB, but 
entailment is preserved.

• Every FOL KB can be propositionalized so as to preserve entailment

• Inference by reduction to PL: propositionalize KB and query,  apply 
inference rules,  return result.
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Converting FOL to PL: Substitution

• Substitution: Given a sentence 𝛼 and binding list 𝜎, the result of 
applying the substitution 𝜎 to 𝛼 is denoted by 𝑆𝑢𝑏𝑠𝑡(𝜎, 𝛼)

• Example:

𝜎 =  {𝑥/𝐴𝑙𝑖, 𝑦/𝐹𝑎𝑡𝑖𝑚𝑎} 

 =  𝐿𝑖𝑘𝑒𝑠(𝑥, 𝑦)

𝑆𝑢𝑏𝑠𝑡({𝑥/𝐴𝑙𝑖, 𝑦/𝐹𝑎𝑡𝑖𝑚𝑎}, 𝐿𝑖𝑘𝑒𝑠(𝑥, 𝑦))  =  𝐿𝑖𝑘𝑒𝑠(𝐴𝑙𝑖, 𝐹𝑎𝑡𝑖𝑚𝑎)
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Converting FOL to PL: Converting ∀

• Universal instantiation (UI): given a universal generalization (an ∀ 
sentence), the rule allows you to infer any instance of that 
generalization.

• Substitute the variable in a universally quantified sentence by a 
ground term. A ground term is a term with no variables. 

• Example: ∀𝑥 𝐾𝑖𝑛𝑔(𝑥) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝑥)  𝐸𝑣𝑖𝑙(𝑥) yields:
• 𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛)  ∧  𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛)  𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)

• 𝐾𝑖𝑛𝑔(𝑅𝑖𝑐ℎ𝑎𝑟𝑑)  ∧  𝐺𝑟𝑒𝑒𝑑𝑦(𝑅𝑖𝑐ℎ𝑎𝑟𝑑)  𝐸𝑣𝑖𝑙(𝑅𝑖𝑐ℎ𝑎𝑟𝑑)

• 𝐾𝑖𝑛𝑔(𝐹𝑎𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛))  ∧  𝐺𝑟𝑒𝑒𝑑𝑦(𝐹𝑎𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛))  𝐸𝑣𝑖𝑙(𝐹𝑎𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛))

• UI can be applied several times to add new sentences
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Converting FOL to PL: Converting ∃ 

• Existential instantiation (EI): For any sentence 𝛼, variable 𝑣, and 
constant symbol 𝑘 that does not appear elsewhere in the knowledge 
base (𝑘 is called a Skolem): replace 𝑣 by 𝑘

• Example: ∃𝑥 𝐶𝑟𝑜𝑤𝑛(𝑥)  ∧  𝑂𝑛𝐻𝑒𝑎𝑑(𝑥, 𝐽𝑜ℎ𝑛) yields:
• 𝐶𝑟𝑜𝑤𝑛(𝐶1)  ∧  𝑂𝑛𝐻𝑒𝑎𝑑(𝐶1, 𝐽𝑜ℎ𝑛)

• Provided 𝐶1 is a new constant symbol, called a Skolem constant

• EI can be applied once to replace the existential sentence
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Example: Reduction to propositional inference

• Instantiating the universal sentence in all possible ways, we have:

• The new KB is propositionalized.
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∀ 𝑥 𝐾𝑖𝑛𝑔(𝑥)  ∧  𝐺𝑟𝑒𝑒𝑑𝑦(𝑥)  𝐸𝑣𝑖𝑙(𝑥)  
𝐾𝑖𝑛𝑔 𝐽𝑜ℎ𝑛  
𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛) 
𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝐽𝑜ℎ𝑛) 

KB

𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛)  ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛)  𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)  
𝐾𝑖𝑛𝑔(𝑅𝑖𝑐ℎ𝑎𝑟𝑑)  ∧  𝐺𝑟𝑒𝑒𝑑𝑦(𝑅𝑖𝑐ℎ𝑎𝑟𝑑)  𝐸𝑣𝑖𝑙(𝑅𝑖𝑐ℎ𝑎𝑟𝑑) 
𝐾𝑖𝑛𝑔 𝐽𝑜ℎ𝑛  
𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛) 
𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝐽𝑜ℎ𝑛) 

irrelevant substitution

New
KB



Propositionalization

• Propositionalization can be made completely general: every FOL KB 
and query can be propositionalized in such a way that entailment is 
preserved.

• Problem: when the KB includes a function symbol, the set of possible 
ground-term substitutions is infinite!

• Example: KB contains 𝐹𝑎𝑡ℎ𝑒𝑟 symbol, then infinitely many nested 
terms (𝐹𝑎𝑡ℎ𝑒𝑟(𝐹𝑎𝑡ℎ𝑒𝑟(𝐹𝑎𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛)))) can be constructed

• Propositional algorithms will have difficulty with an infinitely large set 
of sentences
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Inference in FOL: Inference rules

• Second approach: Instead of translating KB to PL, we can make the 
inference rules work in FOL.

• For example, given the KB, can we prove 𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)?

• The inference that John is evil works like this:
• Find some 𝑥 such that 𝑥 is a 𝑘𝑖𝑛𝑔 and 𝑥 is 𝑔𝑟𝑒𝑒𝑑𝑦,

• And then infer that 𝑥 is 𝑒𝑣𝑖𝑙.

• It is intuitively clear that we can substitute {𝑥/𝐽𝑜ℎ𝑛} and obtain that 
𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)
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∀ 𝑥 𝐾𝑖𝑛𝑔(𝑥)  ∧  𝐺𝑟𝑒𝑒𝑑𝑦(𝑥)  𝐸𝑣𝑖𝑙(𝑥)  
𝐾𝑖𝑛𝑔 𝐽𝑜ℎ𝑛  
𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛) 



Inference in FOL: Inference rules

• What if we have:

• It is intuitively clear that we can substitute {𝑥/𝐽𝑜ℎ𝑛, 𝑦/𝐽𝑜ℎ𝑛} and obtain that 
𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)

• 𝐾𝑖𝑛𝑔(𝑥) is unified with 𝐾𝑖𝑛𝑔(𝑗𝑜ℎ𝑛)

• 𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛) is unified with 𝐺𝑟𝑒𝑒𝑑𝑦(𝑦)
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∀ 𝑥 𝐾𝑖𝑛𝑔(𝑥)  ∧  𝐺𝑟𝑒𝑒𝑑𝑦(𝑥)  𝐸𝑣𝑖𝑙(𝑥)  
𝐾𝑖𝑛𝑔 𝐽𝑜ℎ𝑛  
∀ 𝑦 𝐺𝑟𝑒𝑒𝑑𝑦(𝑦) 



Inference in FOL:  Generalized Modus Ponens

• For atomic sentences 𝑝𝑖, 𝑝𝑖
′, 𝑞, and substitution 𝜃, such that 𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑝𝑖)

= 𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑝𝑖
′), for all 𝑖:

𝑝1
′ ,  𝑝2

′ , … , 𝑝𝑛
′  ,  (𝑝1∧ 𝑝2 ∧ ⋯ ∧ 𝑝𝑛 ⇒ 𝑞)

𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑝)

• All variables are assumed universally quantified.

24

∀ 𝑥 𝐾𝑖𝑛𝑔(𝑥)  ∧  𝐺𝑟𝑒𝑒𝑑𝑦(𝑥)  𝐸𝑣𝑖𝑙(𝑥)  
𝐾𝑖𝑛𝑔 𝐽𝑜ℎ𝑛  
∀ 𝑦 𝐺𝑟𝑒𝑒𝑑𝑦(𝑦) 

𝑝1
′  is 𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛) 𝑝1 is 𝐾𝑖𝑛𝑔(𝑥)

𝑝2
′  is 𝐺𝑟𝑒𝑒𝑑𝑦(𝑦) 𝑝2 is 𝐺𝑟𝑒𝑒𝑑𝑦(𝑥)

𝜃 is {𝑥/𝐽𝑜ℎ𝑛, 𝑦/𝐽𝑜ℎ𝑛} 𝑞 is 𝐸𝑣𝑖𝑙(𝑥)

𝑆𝑢𝑏𝑠𝑡(𝜃, 𝑞) is 𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)



Inference in FOL: Unification

• The UNIFY algorithm takes two sentences and returns a unifier for 
them if one exists: 

𝑈𝑁𝐼𝐹𝑌(𝑝, 𝑞) = 𝜃 where 𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑝) = 𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑞)

• We can make the inference if we can find a substitution such that 
King(x) and Greedy(x) match King(John) and Greedy(y):
{x/John,y/John} works
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𝜃𝑞𝑝

{𝑥/𝐽𝑎𝑛𝑒}𝐾𝑛𝑜𝑤𝑠(𝐽𝑜ℎ𝑛, 𝐽𝑎𝑛𝑒)𝐾𝑛𝑜𝑤𝑠(𝐽𝑜ℎ𝑛, 𝑥)

{𝑥/𝑂𝐽, 𝑦/𝐽𝑜ℎ𝑛}𝐾𝑛𝑜𝑤𝑠(𝑦, 𝑂𝐽)𝐾𝑛𝑜𝑤𝑠(𝐽𝑜ℎ𝑛, 𝑥)

{𝑦/𝐽𝑜ℎ𝑛, 𝑥/𝑀𝑜𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛)}}𝐾𝑛𝑜𝑤𝑠(𝑦, 𝑀𝑜𝑡ℎ𝑒𝑟(𝑦))𝐾𝑛𝑜𝑤𝑠(𝐽𝑜ℎ𝑛, 𝑥)

{𝑓𝑎𝑖𝑙}𝐾𝑛𝑜𝑤𝑠(𝑥, 𝑂𝐽)𝐾𝑛𝑜𝑤𝑠(𝐽𝑜ℎ𝑛, 𝑥)



Inference in FOL: Resolution

𝑙1  ∨ ··· ∨  𝑙𝑘 ,  𝑚1  ∨ ··· ∨  𝑚𝑛

𝑆𝑢𝑏𝑠𝑡(𝜃, 𝑙1 ∨ ··· ∨  𝑙𝑖−1 ∨ 𝑙𝑖+1 ∨ ··· ∨  𝑙𝑘  ∨  𝑚1  ∨ ··· ∨  𝑚𝑗−1 ∨  𝑚𝑗+1 ∨ ··· ∨ 𝑚𝑛) 

where 𝜃 = 𝑈𝑛𝑖𝑓𝑦( 𝑙𝑖 , ¬𝑚𝑗)

• Example: 
¬𝑅𝑖𝑐ℎ(𝑥) ∨ 𝑈𝑛ℎ𝑎𝑝𝑝𝑦(𝑥) , 𝑅𝑖𝑐ℎ(𝐾𝑒𝑛) 

𝑈𝑛ℎ𝑎𝑝𝑝𝑦(𝐾𝑒𝑛) 
, with 𝜃 = {𝑥/𝐾𝑒𝑛}

• Apply resolution steps to 𝐶𝑁𝐹(𝐾𝐵 ∧  ¬𝛼); complete for FOL
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Inference in FOL: Forward chaining

• When a new fact 𝑃 is added to the 𝐾𝐵:

For each rule s.t. 𝑃 unifies with a premise

  if the other premises are known then

    add the conclusion to the KB

  continue chaining

• Forward chaining is data-driven, for example, inferring conclusions from 
incoming percepts

27
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Forward chaining example
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{𝑦/𝑃𝑎𝑡}{𝑥/𝐵𝑜𝑏}

𝐹𝑎𝑠𝑡𝑒𝑟(𝐵𝑜𝑏, 𝑆𝑡𝑒𝑣𝑒)

{𝑧/𝑆𝑡𝑒𝑣𝑒}

{𝑥/𝐵𝑜𝑏, 𝑦/𝑃𝑎𝑡} {𝑦/𝑃𝑎𝑡, 𝑧/𝑆𝑡𝑒𝑣𝑒}

𝑹𝒖𝒍𝒆𝒔 
1. 𝐵𝑢𝑓𝑓𝑎𝑙𝑜(𝑥)  ∧  𝑃𝑖𝑔(𝑦)  ⟹  𝐹𝑎𝑠𝑡𝑒𝑟(𝑥, 𝑦) 
2. 𝑃𝑖𝑔(𝑦) ∧ 𝑆𝑙𝑢𝑔(𝑧) ⟹ 𝐹𝑎𝑠𝑡𝑒𝑟(𝑦, 𝑧) 
3. 𝐹𝑎𝑠𝑡𝑒𝑟(𝑥, 𝑦) ∧ 𝐹𝑎𝑠𝑡𝑒𝑟(𝑦, 𝑧) ⟹ 𝐹𝑎𝑠𝑡𝑒𝑟(𝑥, 𝑧)

𝑭𝒂𝒄𝒕𝒔 
1. 𝐵𝑢𝑓𝑓𝑎𝑙𝑜(𝐵𝑜𝑏)  
2. 𝑃𝑖𝑔(𝑃𝑎𝑡)
3. 𝑆𝑙𝑢𝑔(𝑆𝑡𝑒𝑣𝑒)𝐹𝑎𝑠𝑡𝑒𝑟(𝐵𝑜𝑏, 𝑃𝑎𝑡) 𝐹𝑎𝑠𝑡𝑒𝑟(𝑃𝑎𝑡, 𝑆𝑡𝑒𝑣𝑒)

𝐵𝑢𝑓𝑓𝑎𝑙𝑜(𝐵𝑜𝑏) 𝑃𝑖𝑔(𝑃𝑎𝑡) 𝑆𝑙𝑢𝑔(𝑆𝑡𝑒𝑣𝑒)

𝑵𝒆𝒘 𝒇𝒂𝒄𝒕𝒔 
4. 𝐹𝑎𝑠𝑡𝑒𝑟(𝐵𝑜𝑏, 𝑃𝑎𝑡)  
5. 𝐹𝑎𝑠𝑡𝑒𝑟(𝑃𝑎𝑡, 𝑆𝑡𝑒𝑣𝑒)  
6. 𝐹𝑎𝑠𝑡𝑒𝑟 (𝐵𝑜𝑏, 𝑆𝑡𝑒𝑣𝑒)F1 F2 F3

R1 R2

R3
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Inference in First Order Logic: Backward chaining

• Backward chaining starts with a hypothesis (query) and work 
backwards, according to the rules in the knowledge base until 
reaching confirmed findings or facts.

29

R1. 𝑃𝑖𝑔(𝑦)  ∧  𝑆𝑙𝑢𝑔(𝑧)  ⇒  𝐹𝑎𝑠𝑡𝑒𝑟 (𝑦, 𝑧) 
R2. 𝑆𝑙𝑖𝑚𝑦(𝑧)  ∧  𝐶𝑟𝑒𝑒𝑝𝑠(𝑧)  ⇒ 𝑆𝑙𝑢𝑔(𝑧) 
F1. 𝑃𝑖𝑔(𝑃𝑎𝑡) 
F2. 𝑆𝑙𝑖𝑚𝑦(𝑆𝑡𝑒𝑣𝑒) 
F3. 𝐶𝑟𝑒𝑒𝑝𝑠(𝑆𝑡𝑒𝑣𝑒) 

𝐹𝑎𝑠𝑡𝑒𝑟(𝑃𝑎𝑡, 𝑆𝑡𝑒𝑣𝑒)

𝑃𝑖𝑔(𝑃𝑎𝑡) 𝑆𝑙𝑢𝑔(𝑆𝑡𝑒𝑣𝑒)

{𝑦/𝑃𝑎𝑡, 𝑧/𝑆𝑡𝑒𝑣𝑒}R1

F1  {}
{𝑧/𝑆𝑡𝑒𝑣𝑒}R2

𝑆𝑙𝑖𝑚𝑦(𝑆𝑡𝑒𝑣𝑒) 𝐶𝑟𝑒𝑒𝑝𝑠(𝑆𝑡𝑒𝑣𝑒)
F2  {} F3  {}

Query:
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