
Chapter 8

First Order Logic

Introduction

• Propositional logic has limited expressive power unlike natural
language

• Example: cannot say "pits cause breezes in adjacent squares“, except
by writing one sentence for each square

• 𝐵1,1 ⇔ (𝑃1,2 ∨ 𝑃2,1)

• Question: How can we write one sentence only that can be applied to
a group of objects?

2

First order logic (FOL)

Examples of things we can say:

• All men are mortal:

• ∀𝑥 𝑀𝑎𝑛(𝑥) ⇒ 𝑀𝑜𝑟𝑡𝑎𝑙(𝑥)

• Everybody loves somebody

• ∀𝑥 ∃𝑦 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦)

• The meaning of the word “above”

• ∀𝑥 ∀𝑦 𝑎𝑏𝑜𝑣𝑒(𝑥, 𝑦) ⇔ (𝑜𝑛(𝑥, 𝑦) ∨ ∃𝑧 (𝑜𝑛(𝑥, 𝑧) ∧ 𝑎𝑏𝑜𝑣𝑒(𝑧, 𝑦))

3

First Order Logic

• AKA first-order predicate calculus

• First-order logic assumes the world contains:

1. Objects (noun): people, houses, numbers, colors, …

2. Predicates/ Relations (verbs that relate objects) (return T or F):

• Unary: red, round, prime (properties)

• N-ary: brother of, bigger than, part of

3. Functions (verbs that relate objects) (return an object):

• Example: Sqrt, Plus, Father

• A function is a relation that has one value for one input
4

Models for first-order logic
• Models: the formal

structures that constitute
the possible worlds under
consideration

• Domain of a model is the
set of objects or domain
elements it contains

5

Syntax of FOL: Basic elements

6

Element Example

Constants John, 2, Black

Predicates Brother, >

Functions Sqrt, Father

Variables 𝑥, 𝑦, 𝑎, 𝑏

Connectives , , , , 

Equality : =

Quantifiers , 

Syntax of FOL: Atomic sentences

• Term: is a logical expression that refers to an object

• Is a function 𝑓(𝑡𝑒𝑟𝑚1, … , 𝑡𝑒𝑟𝑚𝑛) or constant or variable

• Example: constant term: John, function: LeftLeg(John)

• Atomic sentence: is a predicate of terms 𝑝𝑟𝑒𝑑(𝑡𝑒𝑟𝑚1, … , 𝑡𝑒𝑟𝑚𝑛) or
𝑡𝑒𝑟𝑚1 = 𝑡𝑒𝑟𝑚2

• 𝑀𝑎𝑛(𝑥)

• 𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛, 𝑅𝑖𝑐ℎ𝑎𝑟𝑑)

• > (3, 1)

• 𝑥 = 𝑦

• 𝐹𝑎𝑡ℎ𝑒𝑟(𝐴𝑙𝑖) = 𝐴ℎ𝑚𝑒𝑑

7

Atomic sentences

Syntax of FOL: Complex sentences

• Complex sentences: are made from atomic sentences using

1. Connectives: 𝑆, 𝑆1
 𝑆2, 𝑆1

 𝑆2, 𝑆1
 𝑆2, 𝑆1



𝑆2

2. Quantifiers: Universal quantification (∀), Existential quantification (∃)

• Example: ∀𝑥 𝑀𝑎𝑛(𝑥) ⇒ 𝑀𝑜𝑟𝑡𝑎𝑙(𝑥)

• Examples:

• > (1,2)  ≤ (1,2)

• > (1,2)   > (1,2)

• 𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝐽𝑜ℎ𝑛, 𝑅𝑖𝑐ℎ𝑎𝑟𝑑)  𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝐽𝑜ℎ𝑛)

8

Syntax of FOL: Quantifiers

• Quantifiers: Universal (∀) and Existential (∃)

• Allow us to express properties of collections of objects instead of
enumerating objects by name

• Universal (∀): “for all”:

• ∀ < 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 > < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 >

• ∀𝑥 𝐴𝑡(𝑥, 𝐾𝑆𝑈) ⇒ 𝑆𝑚𝑎𝑟𝑡(𝑥)

• Existential (∃) : “there exists”

• ∃ < 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 > < 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 >

• ∃ 𝑥 𝐴𝑡(𝑥, 𝑃𝑁𝑈) ∧ 𝑆𝑚𝑎𝑟𝑡(𝑥)

9

Syntax of FOL: summary

10

Syntax of FOL: Quantifiers

• ⇒ is the main connective with
(∀)

• Common Mistake:
• ∀𝑥 𝐴𝑡(𝑥, 𝐾𝑆𝑈) ∧ 𝑆𝑚𝑎𝑟𝑡(𝑥)

• True when everyone is at KSU and
everyone is smart

• ∧ is the main connective with
(∃)

• Common Mistake:
• ∃ 𝑥 𝐴𝑡(𝑥, 𝑃𝑁𝑈) ⇒ 𝑆𝑚𝑎𝑟𝑡(𝑥)

• It is also true for anyone not in
PNU!

11

Syntax of FOL: Properties of quantifiers

• ∀ 𝑥 ∀ 𝑦 is the same as ∀ 𝑦 ∀ 𝑥

• ∃ 𝑥 ∃ 𝑦 is the same as ∃ 𝑦 ∃ 𝑥

• ∃ 𝑥 ∀ 𝑦 is not the same as ∀ 𝑦 ∃ 𝑥:

• ∃ 𝑥 ∀ 𝑦 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦)

 “There is a person who loves everyone in the world”

• ∀ 𝑦 ∃ 𝑥 𝐿𝑜𝑣𝑒𝑠(𝑥, 𝑦)

 “Everyone in the world is loved by at least one person”

• Quantifier duality: each can be expressed using the other

• ∀ 𝑥 𝐿𝑖𝑘𝑒𝑠(𝑥, 𝐼𝑐𝑒𝐶𝑟𝑒𝑎𝑚) ≡ ¬ ∃ 𝑥 ¬𝐿𝑖𝑘𝑒𝑠(𝑥, 𝐼𝑐𝑒𝐶𝑟𝑒𝑎𝑚)

• ∃ 𝑥 𝐿𝑖𝑘𝑒𝑠(𝑥, 𝐵𝑟𝑜𝑐𝑐𝑜𝑙𝑖) ≡ ¬ ∀ 𝑥 ¬𝐿𝑖𝑘𝑒𝑠(𝑥, 𝐵𝑟𝑜𝑐𝑐𝑜𝑙𝑖)

12

Using FOL: The kinship domain

• Objects in the kinship domain are people

• Two unary predicates: 𝑀𝑎𝑙𝑒 and 𝐹𝑒𝑚𝑎𝑙𝑒

• Kinship relations are represented by binary predicates: 𝑃𝑎𝑟𝑒𝑛𝑡,
𝑆𝑖𝑏𝑙𝑖𝑛𝑔, 𝐵𝑟𝑜𝑡ℎ𝑒𝑟, 𝑆𝑖𝑠𝑡𝑒𝑟, 𝐶ℎ𝑖𝑙𝑑, 𝐷𝑎𝑢𝑔ℎ𝑡𝑒𝑟, 𝑆𝑜𝑛, 𝑆𝑝𝑜𝑢𝑠𝑒, 𝑊𝑖𝑓𝑒,
𝐻𝑢𝑠𝑏𝑎𝑛𝑑, 𝐺𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡, 𝐺𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑, 𝐶𝑜𝑢𝑠𝑖𝑛, 𝐴𝑢𝑛𝑡, and 𝑈𝑛𝑐𝑙𝑒.

• Use functions for 𝑀𝑜𝑡ℎ𝑒𝑟 and 𝐹𝑎𝑡ℎ𝑒𝑟, because every person has
exactly one of each of these

13

Using FOL: The kinship domain

• One’s husband is one’s male spouse:

∀𝑤, ℎ 𝐻𝑢𝑠𝑏𝑎𝑛𝑑(ℎ, 𝑤) ⇔ 𝑀𝑎𝑙𝑒(ℎ) ∧ 𝑆𝑝𝑜𝑢𝑠𝑒(ℎ, 𝑤)

• Male and female are disjoint categories:

∀𝑥 𝑀𝑎𝑙𝑒(𝑥) ⇔ ¬𝐹𝑒𝑚𝑎𝑙𝑒(𝑥)

• Parent and child are inverse relations:

∀𝑝, 𝑐 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝, 𝑐) ⇔ 𝐶ℎ𝑖𝑙𝑑(𝑐, 𝑝)

• A grandparent is a parent of one’s parent:

∀𝑔, 𝑐 𝐺𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡(𝑔, 𝑐) ⇔ ∃𝑝 𝑃𝑎𝑟𝑒𝑛𝑡(𝑔, 𝑝) ∧ 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝, 𝑐)

• A sibling is another child of one’s parents:

∀𝑥, 𝑦 𝑆𝑖𝑏𝑙𝑖𝑛𝑔(𝑥, 𝑦) ⇔ 𝑥 ≠ 𝑦 ∧ ∃𝑝 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝, 𝑥) ∧ 𝑃𝑎𝑟𝑒𝑛𝑡(𝑝, 𝑦)

14

Chapter 9

Inference in First Order Logic

Inference in FOL

• Purpose of inference: 𝐾𝐵 ⊨ 𝛼 ?

• First Approach: Reduce FOL to PL and then apply PL inference

• Inference by model checking is in general impossible in FOL: the
models are generally infinite or at least extremely large.

• The KB propositionalized is not equivalent to the original KB, but
entailment is preserved.

• Every FOL KB can be propositionalized so as to preserve entailment

• Inference by reduction to PL: propositionalize KB and query, apply
inference rules, return result.

16

Converting FOL to PL: Substitution

• Substitution: Given a sentence 𝛼 and binding list 𝜎, the result of
applying the substitution 𝜎 to 𝛼 is denoted by 𝑆𝑢𝑏𝑠𝑡(𝜎, 𝛼)

• Example:

𝜎 = {𝑥/𝐴𝑙𝑖, 𝑦/𝐹𝑎𝑡𝑖𝑚𝑎}

 = 𝐿𝑖𝑘𝑒𝑠(𝑥, 𝑦)

𝑆𝑢𝑏𝑠𝑡({𝑥/𝐴𝑙𝑖, 𝑦/𝐹𝑎𝑡𝑖𝑚𝑎}, 𝐿𝑖𝑘𝑒𝑠(𝑥, 𝑦)) = 𝐿𝑖𝑘𝑒𝑠(𝐴𝑙𝑖, 𝐹𝑎𝑡𝑖𝑚𝑎)

17

Converting FOL to PL: Converting ∀

• Universal instantiation (UI): given a universal generalization (an ∀
sentence), the rule allows you to infer any instance of that
generalization.

• Substitute the variable in a universally quantified sentence by a
ground term. A ground term is a term with no variables.

• Example: ∀𝑥 𝐾𝑖𝑛𝑔(𝑥) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝑥)  𝐸𝑣𝑖𝑙(𝑥) yields:
• 𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛)  𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)

• 𝐾𝑖𝑛𝑔(𝑅𝑖𝑐ℎ𝑎𝑟𝑑) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝑅𝑖𝑐ℎ𝑎𝑟𝑑)  𝐸𝑣𝑖𝑙(𝑅𝑖𝑐ℎ𝑎𝑟𝑑)

• 𝐾𝑖𝑛𝑔(𝐹𝑎𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛)) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝐹𝑎𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛))  𝐸𝑣𝑖𝑙(𝐹𝑎𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛))

• UI can be applied several times to add new sentences

18

Converting FOL to PL: Converting ∃

• Existential instantiation (EI): For any sentence 𝛼, variable 𝑣, and
constant symbol 𝑘 that does not appear elsewhere in the knowledge
base (𝑘 is called a Skolem): replace 𝑣 by 𝑘

• Example: ∃𝑥 𝐶𝑟𝑜𝑤𝑛(𝑥) ∧ 𝑂𝑛𝐻𝑒𝑎𝑑(𝑥, 𝐽𝑜ℎ𝑛) yields:
• 𝐶𝑟𝑜𝑤𝑛(𝐶1) ∧ 𝑂𝑛𝐻𝑒𝑎𝑑(𝐶1, 𝐽𝑜ℎ𝑛)

• Provided 𝐶1 is a new constant symbol, called a Skolem constant

• EI can be applied once to replace the existential sentence

19

Example: Reduction to propositional inference

• Instantiating the universal sentence in all possible ways, we have:

• The new KB is propositionalized.

20

∀ 𝑥 𝐾𝑖𝑛𝑔(𝑥) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝑥)  𝐸𝑣𝑖𝑙(𝑥)
𝐾𝑖𝑛𝑔 𝐽𝑜ℎ𝑛
𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛)
𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝐽𝑜ℎ𝑛)

KB

𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛)  𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)
𝐾𝑖𝑛𝑔(𝑅𝑖𝑐ℎ𝑎𝑟𝑑) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝑅𝑖𝑐ℎ𝑎𝑟𝑑)  𝐸𝑣𝑖𝑙(𝑅𝑖𝑐ℎ𝑎𝑟𝑑)
𝐾𝑖𝑛𝑔 𝐽𝑜ℎ𝑛
𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛)
𝐵𝑟𝑜𝑡ℎ𝑒𝑟(𝑅𝑖𝑐ℎ𝑎𝑟𝑑, 𝐽𝑜ℎ𝑛)

irrelevant substitution

New
KB

Propositionalization

• Propositionalization can be made completely general: every FOL KB
and query can be propositionalized in such a way that entailment is
preserved.

• Problem: when the KB includes a function symbol, the set of possible
ground-term substitutions is infinite!

• Example: KB contains 𝐹𝑎𝑡ℎ𝑒𝑟 symbol, then infinitely many nested
terms (𝐹𝑎𝑡ℎ𝑒𝑟(𝐹𝑎𝑡ℎ𝑒𝑟(𝐹𝑎𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛)))) can be constructed

• Propositional algorithms will have difficulty with an infinitely large set
of sentences

21

Inference in FOL: Inference rules

• Second approach: Instead of translating KB to PL, we can make the
inference rules work in FOL.

• For example, given the KB, can we prove 𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)?

• The inference that John is evil works like this:
• Find some 𝑥 such that 𝑥 is a 𝑘𝑖𝑛𝑔 and 𝑥 is 𝑔𝑟𝑒𝑒𝑑𝑦,

• And then infer that 𝑥 is 𝑒𝑣𝑖𝑙.

• It is intuitively clear that we can substitute {𝑥/𝐽𝑜ℎ𝑛} and obtain that
𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)

22

∀ 𝑥 𝐾𝑖𝑛𝑔(𝑥) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝑥)  𝐸𝑣𝑖𝑙(𝑥)
𝐾𝑖𝑛𝑔 𝐽𝑜ℎ𝑛
𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛)

Inference in FOL: Inference rules

• What if we have:

• It is intuitively clear that we can substitute {𝑥/𝐽𝑜ℎ𝑛, 𝑦/𝐽𝑜ℎ𝑛} and obtain that
𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)

• 𝐾𝑖𝑛𝑔(𝑥) is unified with 𝐾𝑖𝑛𝑔(𝑗𝑜ℎ𝑛)

• 𝐺𝑟𝑒𝑒𝑑𝑦(𝐽𝑜ℎ𝑛) is unified with 𝐺𝑟𝑒𝑒𝑑𝑦(𝑦)

23

∀ 𝑥 𝐾𝑖𝑛𝑔(𝑥) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝑥)  𝐸𝑣𝑖𝑙(𝑥)
𝐾𝑖𝑛𝑔 𝐽𝑜ℎ𝑛
∀ 𝑦 𝐺𝑟𝑒𝑒𝑑𝑦(𝑦)

Inference in FOL: Generalized Modus Ponens

• For atomic sentences 𝑝𝑖, 𝑝𝑖
′, 𝑞, and substitution 𝜃, such that 𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑝𝑖)

= 𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑝𝑖
′), for all 𝑖:

𝑝1
′ , 𝑝2

′ , … , 𝑝𝑛
′ , (𝑝1∧ 𝑝2 ∧ ⋯ ∧ 𝑝𝑛 ⇒ 𝑞)

𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑝)

• All variables are assumed universally quantified.

24

∀ 𝑥 𝐾𝑖𝑛𝑔(𝑥) ∧ 𝐺𝑟𝑒𝑒𝑑𝑦(𝑥)  𝐸𝑣𝑖𝑙(𝑥)
𝐾𝑖𝑛𝑔 𝐽𝑜ℎ𝑛
∀ 𝑦 𝐺𝑟𝑒𝑒𝑑𝑦(𝑦)

𝑝1
′ is 𝐾𝑖𝑛𝑔(𝐽𝑜ℎ𝑛) 𝑝1 is 𝐾𝑖𝑛𝑔(𝑥)

𝑝2
′ is 𝐺𝑟𝑒𝑒𝑑𝑦(𝑦) 𝑝2 is 𝐺𝑟𝑒𝑒𝑑𝑦(𝑥)

𝜃 is {𝑥/𝐽𝑜ℎ𝑛, 𝑦/𝐽𝑜ℎ𝑛} 𝑞 is 𝐸𝑣𝑖𝑙(𝑥)

𝑆𝑢𝑏𝑠𝑡(𝜃, 𝑞) is 𝐸𝑣𝑖𝑙(𝐽𝑜ℎ𝑛)

Inference in FOL: Unification

• The UNIFY algorithm takes two sentences and returns a unifier for
them if one exists:

𝑈𝑁𝐼𝐹𝑌(𝑝, 𝑞) = 𝜃 where 𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑝) = 𝑆𝑈𝐵𝑆𝑇(𝜃, 𝑞)

• We can make the inference if we can find a substitution such that
King(x) and Greedy(x) match King(John) and Greedy(y):
{x/John,y/John} works

25

𝜃𝑞𝑝

{𝑥/𝐽𝑎𝑛𝑒}𝐾𝑛𝑜𝑤𝑠(𝐽𝑜ℎ𝑛, 𝐽𝑎𝑛𝑒)𝐾𝑛𝑜𝑤𝑠(𝐽𝑜ℎ𝑛, 𝑥)

{𝑥/𝑂𝐽, 𝑦/𝐽𝑜ℎ𝑛}𝐾𝑛𝑜𝑤𝑠(𝑦, 𝑂𝐽)𝐾𝑛𝑜𝑤𝑠(𝐽𝑜ℎ𝑛, 𝑥)

{𝑦/𝐽𝑜ℎ𝑛, 𝑥/𝑀𝑜𝑡ℎ𝑒𝑟(𝐽𝑜ℎ𝑛)}}𝐾𝑛𝑜𝑤𝑠(𝑦, 𝑀𝑜𝑡ℎ𝑒𝑟(𝑦))𝐾𝑛𝑜𝑤𝑠(𝐽𝑜ℎ𝑛, 𝑥)

{𝑓𝑎𝑖𝑙}𝐾𝑛𝑜𝑤𝑠(𝑥, 𝑂𝐽)𝐾𝑛𝑜𝑤𝑠(𝐽𝑜ℎ𝑛, 𝑥)

Inference in FOL: Resolution

𝑙1 ∨ ··· ∨ 𝑙𝑘 , 𝑚1 ∨ ··· ∨ 𝑚𝑛

𝑆𝑢𝑏𝑠𝑡(𝜃, 𝑙1 ∨ ··· ∨ 𝑙𝑖−1 ∨ 𝑙𝑖+1 ∨ ··· ∨ 𝑙𝑘 ∨ 𝑚1 ∨ ··· ∨ 𝑚𝑗−1 ∨ 𝑚𝑗+1 ∨ ··· ∨ 𝑚𝑛)

where 𝜃 = 𝑈𝑛𝑖𝑓𝑦(𝑙𝑖 , ¬𝑚𝑗)

• Example:
¬𝑅𝑖𝑐ℎ(𝑥) ∨ 𝑈𝑛ℎ𝑎𝑝𝑝𝑦(𝑥) , 𝑅𝑖𝑐ℎ(𝐾𝑒𝑛)

𝑈𝑛ℎ𝑎𝑝𝑝𝑦(𝐾𝑒𝑛)
, with 𝜃 = {𝑥/𝐾𝑒𝑛}

• Apply resolution steps to 𝐶𝑁𝐹(𝐾𝐵 ∧ ¬𝛼); complete for FOL

26

Inference in FOL: Forward chaining

• When a new fact 𝑃 is added to the 𝐾𝐵:

For each rule s.t. 𝑃 unifies with a premise

 if the other premises are known then

 add the conclusion to the KB

 continue chaining

• Forward chaining is data-driven, for example, inferring conclusions from
incoming percepts

27

Students

Forward chaining example

28

{𝑦/𝑃𝑎𝑡}{𝑥/𝐵𝑜𝑏}

𝐹𝑎𝑠𝑡𝑒𝑟(𝐵𝑜𝑏, 𝑆𝑡𝑒𝑣𝑒)

{𝑧/𝑆𝑡𝑒𝑣𝑒}

{𝑥/𝐵𝑜𝑏, 𝑦/𝑃𝑎𝑡} {𝑦/𝑃𝑎𝑡, 𝑧/𝑆𝑡𝑒𝑣𝑒}

𝑹𝒖𝒍𝒆𝒔
1. 𝐵𝑢𝑓𝑓𝑎𝑙𝑜(𝑥) ∧ 𝑃𝑖𝑔(𝑦) ⟹ 𝐹𝑎𝑠𝑡𝑒𝑟(𝑥, 𝑦)
2. 𝑃𝑖𝑔(𝑦) ∧ 𝑆𝑙𝑢𝑔(𝑧) ⟹ 𝐹𝑎𝑠𝑡𝑒𝑟(𝑦, 𝑧)
3. 𝐹𝑎𝑠𝑡𝑒𝑟(𝑥, 𝑦) ∧ 𝐹𝑎𝑠𝑡𝑒𝑟(𝑦, 𝑧) ⟹ 𝐹𝑎𝑠𝑡𝑒𝑟(𝑥, 𝑧)

𝑭𝒂𝒄𝒕𝒔
1. 𝐵𝑢𝑓𝑓𝑎𝑙𝑜(𝐵𝑜𝑏)
2. 𝑃𝑖𝑔(𝑃𝑎𝑡)
3. 𝑆𝑙𝑢𝑔(𝑆𝑡𝑒𝑣𝑒)𝐹𝑎𝑠𝑡𝑒𝑟(𝐵𝑜𝑏, 𝑃𝑎𝑡) 𝐹𝑎𝑠𝑡𝑒𝑟(𝑃𝑎𝑡, 𝑆𝑡𝑒𝑣𝑒)

𝐵𝑢𝑓𝑓𝑎𝑙𝑜(𝐵𝑜𝑏) 𝑃𝑖𝑔(𝑃𝑎𝑡) 𝑆𝑙𝑢𝑔(𝑆𝑡𝑒𝑣𝑒)

𝑵𝒆𝒘 𝒇𝒂𝒄𝒕𝒔
4. 𝐹𝑎𝑠𝑡𝑒𝑟(𝐵𝑜𝑏, 𝑃𝑎𝑡)
5. 𝐹𝑎𝑠𝑡𝑒𝑟(𝑃𝑎𝑡, 𝑆𝑡𝑒𝑣𝑒)
6. 𝐹𝑎𝑠𝑡𝑒𝑟 (𝐵𝑜𝑏, 𝑆𝑡𝑒𝑣𝑒)F1 F2 F3

R1 R2

R3

Students

Inference in First Order Logic: Backward chaining

• Backward chaining starts with a hypothesis (query) and work
backwards, according to the rules in the knowledge base until
reaching confirmed findings or facts.

29

R1. 𝑃𝑖𝑔(𝑦) ∧ 𝑆𝑙𝑢𝑔(𝑧) ⇒ 𝐹𝑎𝑠𝑡𝑒𝑟 (𝑦, 𝑧)
R2. 𝑆𝑙𝑖𝑚𝑦(𝑧) ∧ 𝐶𝑟𝑒𝑒𝑝𝑠(𝑧) ⇒ 𝑆𝑙𝑢𝑔(𝑧)
F1. 𝑃𝑖𝑔(𝑃𝑎𝑡)
F2. 𝑆𝑙𝑖𝑚𝑦(𝑆𝑡𝑒𝑣𝑒)
F3. 𝐶𝑟𝑒𝑒𝑝𝑠(𝑆𝑡𝑒𝑣𝑒)

𝐹𝑎𝑠𝑡𝑒𝑟(𝑃𝑎𝑡, 𝑆𝑡𝑒𝑣𝑒)

𝑃𝑖𝑔(𝑃𝑎𝑡) 𝑆𝑙𝑢𝑔(𝑆𝑡𝑒𝑣𝑒)

{𝑦/𝑃𝑎𝑡, 𝑧/𝑆𝑡𝑒𝑣𝑒}R1

F1 {}
{𝑧/𝑆𝑡𝑒𝑣𝑒}R2

𝑆𝑙𝑖𝑚𝑦(𝑆𝑡𝑒𝑣𝑒) 𝐶𝑟𝑒𝑒𝑝𝑠(𝑆𝑡𝑒𝑣𝑒)
F2 {} F3 {}

Query:

Students

	Slide 1: Chapter 8
	Slide 2: Introduction
	Slide 3: First order logic (FOL)
	Slide 4: First Order Logic
	Slide 5: Models for first-order logic
	Slide 6: Syntax of FOL: Basic elements
	Slide 7: Syntax of FOL: Atomic sentences
	Slide 8: Syntax of FOL: Complex sentences
	Slide 9: Syntax of FOL: Quantifiers
	Slide 10: Syntax of FOL: summary
	Slide 11: Syntax of FOL: Quantifiers
	Slide 12: Syntax of FOL: Properties of quantifiers
	Slide 13: Using FOL: The kinship domain
	Slide 14: Using FOL: The kinship domain
	Slide 15: Chapter 9
	Slide 16: Inference in FOL
	Slide 17: Converting FOL to PL: Substitution
	Slide 18: Converting FOL to PL: Converting for all
	Slide 19: Converting FOL to PL: Converting there exists
	Slide 20: Example: Reduction to propositional inference
	Slide 21: Propositionalization
	Slide 22: Inference in FOL: Inference rules
	Slide 23: Inference in FOL: Inference rules
	Slide 24: Inference in FOL: Generalized Modus Ponens
	Slide 25: Inference in FOL: Unification
	Slide 26: Inference in FOL: Resolution
	Slide 27: Inference in FOL: Forward chaining
	Slide 28: Forward chaining example
	Slide 29: Inference in First Order Logic: Backward chaining

