

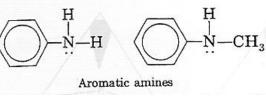
Fundamentals of Organic Chemistry CHEM 108

King Saud University

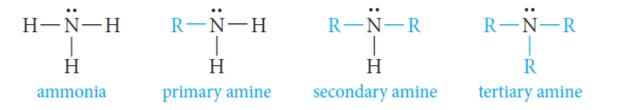
College of Science, Chemistry Department

CHEM 108

CHAPTER 8. AMINES

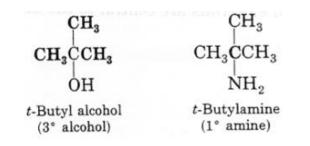

Structure and Classification of Amines

- 2
- Amines are compounds that derived from ammonia by replacement of one, two, or three hydrogens by alkyl or aryl groups.


• Aliphatic amines contain only alkyl groups bonded directly to the nitrogen atom.

Aliphatic amines

Aromatic amines are those in which one or more aryl groups are bonded directly to nitrogen.



• The relation between **ammonia and amines** is illustrated by the following structures:

• Amines are classified as primary, secondary, or tertiary, depending on whether one, two, or three organic groups are attached to the nitrogen.

• NOTE:

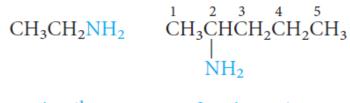
- t-butyl alcohol is a tertiary alcohol (because three carbons are attached to the carbinol carbon).
- t-butyl amine is a primary amine (because only one carbon is attached directly to the nitrogen atom).

Nomenclature of Amines

Common Names

• Amines are named by specifying the alkyl groups attached to the nitrogen and adding the suffix *—amine* (*Alkylamine*).

CH₃CH₂NH₂ $(CH_3CH_2)_2NH$ $(CH_3CH_2)_3N$ ethylamine diethylamine triethylamine (primary) (secondary) (tertiary) CH2NHCH3 CH₃NHCH₂CH₃ CH₃NH₂ Ethylmethylamine Benzylmethylamine Methylamine CH_3 H₃C CH CH₃CH₂NCH₂CH₃ CH₃NHCH₃ Diethylisopropylamine Dimethylamine


Nomenclature of Amines

IUPAC System

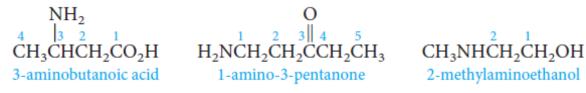
 \circ The amino group, -NH₂, is named as a substituent.

aminoethane 2

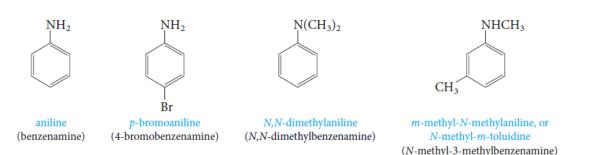
2-aminopentane

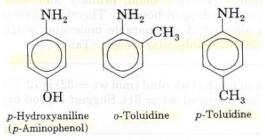
• Amines can be named as alkanamines.

CH₃CH₂CH₂NH₂ propanamine CH₃CH₂CH₂NH₂ 2-propanamine CH₃CHCH₃ NH₂ NH


Nomenclature of Amines

6


IUPAC System


• When other functional groups are present, the amino group, -NH₂, is named as a substituent.

• Aromatic amines are named as derivatives of aniline.

 \circ In the CA system, aniline is called benzenamine.

Physical Properties of Amines

Boiling Point

- Methylamine and ethylamine are gases, but primary amines with three or more carbons are liquids.
- **Primary amines** boil well above alkanes with comparable molecular weights, but below comparable alcohols.

Intermolecular N-H· · ·N hydrogen bonds are important and raise the boiling points of primary and secondary amines but are not as strong as the O-H· · ·O bonds of alcohols. The reason for this is that nitrogen is not as electronegative as oxygen.

alkane	CH ₃ CH ₃ (30) bp -88.6°C	CH ₃ CH ₂ CH ₃ (44) bp -42.1°C
amine	CH ₃ NH ₂ (31) bp -6.3°C	CH ₃ CH ₂ NH ₂ (45) bp +16.6°C
alcohol	CH ₃ OH (32) bp +65.0°C	CH ₃ CH ₂ OH (46) bp +78.5°C

Physical Properties of Amines

Boiling Point

• Tertiary amines are also polar compounds, but because hydrogen is not bonded to nitrogen, these amines are <u>incapable</u> of intermolecular hydrogen bonding.

Their boiling points are Lower than primary and secondary amines of identical molecular weights and Higher than those of alkanes of similar molecular weight.

Solubility in Water

- All three classes of amines can form hydrogen bonds with the -OH group of water (that is, O-H· · ·N).
- **Primary and secondary amines** can also form hydrogen bonds with the oxygen atom in water: N-H· · ·O.
- Amines with up to six carbons show appreciable solubility in water.

The Basicity of Amines

- The unshared pair of electrons on the nitrogen atom dominates the chemistry of amines.
- Because of this electron pair, amines are both basic and nucleophilic.
- Aqueous solutions of amines are basic because of the following equilibrium:

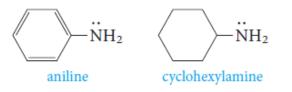
$$\underset{\text{amine}}{\overset{}} N : + H - \overset{}{\overset{}} \overset{}{\overset{}}_{O} H \Longrightarrow \overset{}{\underset{\text{aminonium}}{\overset{}}} N^{+} - H + \overset{-}{\overset{}} \overset{}{\overset{}} \overset{}{\overset{}} \overset{}{\overset{}} H$$

- Electron-donating groups increase the basicity of amines.
- Electron-withdrawing groups decrease their basicity.

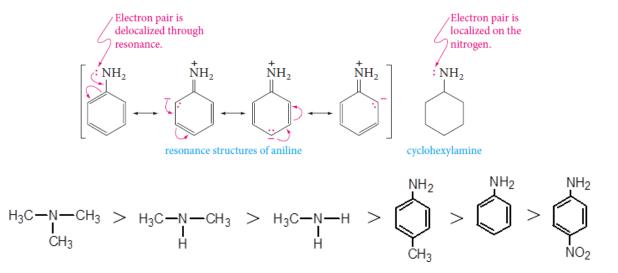
-NH.

One electron-donating group

CH₂-NH-


Two electron-donating groups

The Basicity of Amines



• Aromatic amines are much weaker than aliphatic amines or ammonia.

- **Example:** aniline is less basic than cyclohexylamine.

The reason is the resonance delocalization of the unshared electron pair that is possible in aniline, but not in cyclohexylamine:

1) Alkylation of Ammonia

11

• Ammonia reacts with alkyl halides to give amines via a two-step process.

The first step is a nucleophilic substitution reaction. The free amine can then be obtained from its salt by treatment with a strong base

• **Primary, secondary, and tertiary amines** can be similarly alkylated.

 $RNH_2 + R - X \longrightarrow R_2NH_2 X - NaOH R_2NH$ secondary primary amine amine $R_3 NH + R - X \longrightarrow R_3 NH X \longrightarrow R_3 N$ secondarv tertiary amine amine $\ddot{N} + \dot{R} - \dot{X} \longrightarrow R_{4}N^{+}X^{-}$ tertiary amine ammonium salt

2) Reduction of Nitro Groups

- 12
- The best route to **aromatic primary amines** is by reduction of the corresponding nitro compounds.
 - The nitro group is easily reduced, either catalytically with hydrogen or by chemical reducing agents.

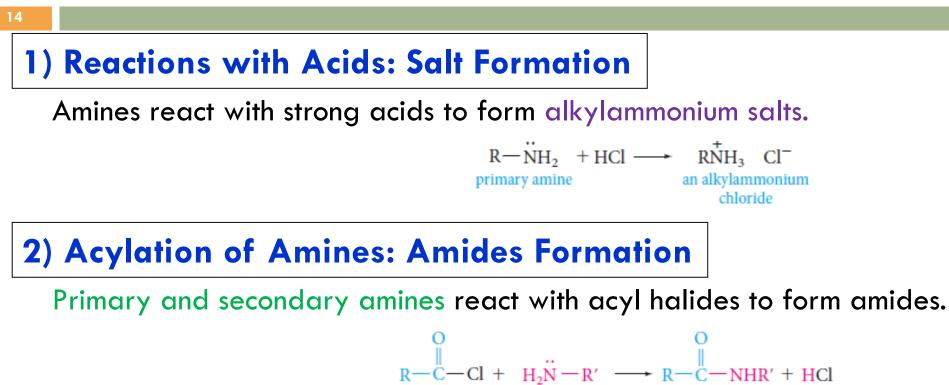
$$CH_{3} \xrightarrow{\qquad NO_{2} \quad \frac{3 \text{ H}_{2}, \text{ Ni catalyst}}{\text{ or }}}_{p-\text{nitrotoluene}} CH_{3} \xrightarrow{\qquad NH_{2} + 2 \text{ H}_{2}O}_{p-\text{toluidine}} NH_{2} + 2 \text{ H}_{2}O$$

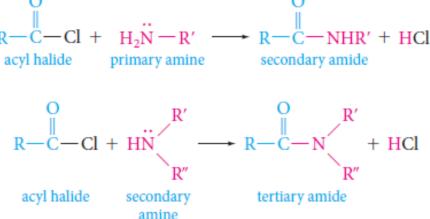
3) Reduction of Nitriles

13

• **Reduction of nitriles** (cyanides) gives primary amines.

$$R - C \equiv N \xrightarrow{\text{LiAlH}_4} RCH_2NH_2$$


4) Reduction of Amides


• Amides can be reduced to amines with lithium aluminum hydride.

$$R - C - N \xrightarrow{R'}_{R''} \xrightarrow{\text{LiAlH}_4} RCH_2 N \xrightarrow{R'}_{R''} (R' \text{ and } R'' \text{ may be } H \text{ or organic groups.})$$

Reactions of Amines

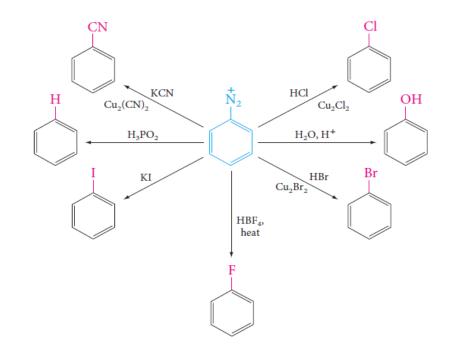
15

3) Imines Formation

Primary amines, $R-NH_2$ or $ArNH_2$, undergo nucleophilic addition with aldehydes or ketones in an acidic buffer to give substituted imines.

Primary aromatic amices react with nitrous acid at 0°C to yield aryldiazonium ions.
 The process is called diazotization.

$$NH_{2} + HONO + H^{+}Cl^{-} \xrightarrow[aqueous solution]{0-5^{\circ}C} N_{2}^{+}Cl^{-} + 2 H_{2}O$$
aniline nitrous acid benzenediazonium chloride


Reactions of Amines

4) Aromatic Diazonium Salts

16

• They are useful in synthesis because the diazonio groum $(-N_2^+)$ can be replaced by nucleophiles; the other product is nitrogen gas.

