Exp.8: Transistor circuits

Part 1: Transistor input characteristic

1-Objectives:

- To measure the base current (I_B) as function of base-toemitter voltage (V_{BE}) , keeping emitter-to-collector voltage (V_{CE}) be constant.

2-Circuit elements:

- Power supply unit
- Fixed Resistor 1 k Ω
- Potentiometer 1 k Ω
- Transistor BD130, NPN,
- Ammeter
- Set of connecting leads

3-<u>Circuit Diagram :</u>

4-Procedure:

- Connect the circuit as shown in the figure 1.
- Change the voltage V_{BE} by means of potentiometer and record the base current I_B values.
- Plot a graph between V_{BE} and I_B .
- Calculate the ratio of input voltage to input current for three different base currents from Tab. 1.
- a) $I_B = 0.4 \text{ mA} \rightarrow R = \Omega$
- b) $I_B = 1.3 \text{ mA} \rightarrow R = \Omega$
- c) $I_B = 13 \text{ mA} \rightarrow R = \Omega$
- Choose the operating point $Q=(I_B, V_{BE})$, in the rise up region.Calculate the dynamic base resistance

(Draw tangents to the operating points)

V _{BE} (volt)	0	0.1	0.3	0.5	0.6	0.65	0.7	0.75	0.8
I _B (mA)									

Table 1

Part 2: Control characteristic with current amplification

1-Objectives:

- To measure how the collector current (I_C) changes with base current (I_B) when the collector-to- emitter voltage (V_{CE}) is kept constant.
- To determine the current gain factor (β) of a common emitter configuration circuit.

2-Circuit elements:

- Power supply unit
- Fixed Resistor 1 k Ω
- Potentiometer 1 k Ω
- Transistor BD130, NPN,
- Ammeter
- Set of connecting leads

3-Circuit Diagram

4-Procedure:

- Connect the circuit as shown in the figure 2.
- Change the base current I_B by means of the potentiometer and record the collector current I_C .
- Determine the value (β) for common emitter configuration.
- Plot a graph between I_B and I_C .

_l _₿ mA	∣ _c mA	В
0.01		
0.02		
0.05		-
0.08		
0.10		
0.20		
0.30		
0.50		

Part 3: Transistor output characteristic

1-Objectives:

-Measurement methods for determining the relation between $V_{\mbox{\scriptsize CE}}$ and $I_{\mbox{\scriptsize C}}$

-Recording parameters in tables

-Representing the parameters in the output characteristic field

2-Circuit elements:

- Power supply unit
- Resistor 100 Ω
- Resistor 10 kΩ
- Potentiometer 1 k Ω
- Potentiometer $10 \text{ k}\Omega$
- Transistor BD130
- 2 Multimeter
- Set of connecting leads

3-<u>Circuit Diagram</u>

4-Procedure:

- 1) Connect the circuit as shown in the circuit diagram.
- 2) Set the voltages V_{CE} given in Tab. 1 using the collector potentiometer (1 k Ω),
- 3) Measure the corresponding value VII
- 4) Calculate VI in each case (VI = 10V VII)
- 5) Calculate the corresponding collector currents I_C ($I_C = VI / R$; $R = 100\Omega$)
- 6) Repeat the procedure for the base currents 200 μ A, 300 μ A, 400 μ A, and 500 μ A.

V _{CE}	$I_{\rm B}=100~\mu {\rm A}$		$I_{\rm B} = 200 \ \mu {\rm A}$		IB = 300 µA		IB = 400 µA		IB = 500	
[V]	VI	IC	VI	IC	VI	IC	VI	IC	VI	IC
	[V]	[mA]	[V]	[mA]	[V]	[mA]	[V]	[mA]	[V]	[mA]
0.2										
0.5										
1.0										
2.0										
4.0										
6.0										
8.0										

7) Draw the characteristics from the values recorded in Tables 2.