Exp.8: Transistor circuits

Part 1: Transistor input characteristic

1-Objectives:

- To measure the base current $\left(\mathrm{I}_{\mathrm{B}}\right)$ as function of base-toemitter voltage (V_{BE}), keeping emitter-to-collector voltage (V_{CE}) be constant.

2-Circuit elements:

- Power supply unit
- Fixed Resistor $1 \mathrm{k} \Omega$
- Potentiometer $1 \mathrm{k} \Omega$
- Transistor BD130, NPN,
- Ammeter
- Set of connecting leads

3-Circuit Diagram :

Fig. 1

4-Procedure:

- Connect the circuit as shown in the figure 1.
- Change the voltage V_{BE} by means of potentiometer and record the base current I_{B} values.
- Plot a graph between V_{BE} and I_{B}.
- Calculate the ratio of input voltage to input current for three different base currents from Tab. 1.
- a) $\mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~mA} \rightarrow \mathrm{R}=\Omega$
- b) $\mathrm{I}_{\mathrm{B}}=1.3 \mathrm{~mA} \rightarrow \mathrm{R}=\Omega$
- c) $\mathrm{I}_{\mathrm{B}}=13 \mathrm{~mA} \rightarrow \mathrm{R}=\Omega$
- Choose the operating point $\mathrm{Q}=\left(\mathrm{I}_{\mathrm{B}}, \mathrm{V}_{\mathrm{BE}}\right)$, in the rise up region.Calculate the dynamic base resistance
(Draw tangents to the operating points)

$\mathrm{V}_{\mathrm{BE}}($ volt $)$	0	0.1	0.3	0.5	0.6	0.65	0.7	0.75	0.8
$\mathrm{I}_{\mathrm{B}}(\mathrm{mA})$									

Table 1

Part 2: Control characteristic with current amplification

1-Objectives:

- To measure how the collector current $\left(\mathrm{I}_{\mathrm{C}}\right)$ changes with base current $\left(\mathrm{I}_{\mathrm{B}}\right)$ when the collector-to- emitter voltage $\left(\mathrm{V}_{\mathrm{CE}}\right)$ is kept constant.
- To determine the current gain factor (β) of a common emitter configuration circuit.

2-Circuit elements:

- Power supply unit
- Fixed Resistor $1 \mathrm{k} \Omega$
- Potentiometer $1 \mathrm{k} \Omega$
- Transistor BD130, NPN,
- Ammeter
- Set of connecting leads

3-Circuit Diagram

Fig. 2

4-Procedure:

- Connect the circuit as shown in the figure 2.
- Change the base current I_{B} by means of the potentiometer and record the collector current I_{C}.
- Determine the value (β) for common emitter configuration.
- Plot a graph between I_{B} and I_{C}.

$\frac{I_{B}}{m A}$	$\frac{I_{C}}{m A}$	B
0.01		
0.02		
0.05		
0.08		
0.10		
0.20		
0.30		
0.50		

Part 3: Transistor output characteristic

1-Objectives:

-Measurement methods for determining the relation between V_{CE} and I_{C}
-Recording parameters in tables
-Representing the parameters in the output characteristic field

2-Circuit elements:

- Power supply unit
- Resistor 100Ω
- Resistor $10 \mathrm{k} \Omega$
- Potentiometer $1 \mathrm{k} \Omega$
- Potentiometer $10 \mathrm{k} \Omega$
- Transistor BD130
- 2 Multimeter
- Set of connecting leads

3-Circuit Diagram

4-Procedure:

1) Connect the circuit as shown in the circuit diagram.
2) Set the voltages V_{CE} given in Tab. 1 using the collector potentiometer ($1 \mathrm{k} \Omega$),
3) Measure the corresponding value VII
4) Calculate VI in each case ($\mathrm{VI}=10 \mathrm{~V}-\mathrm{VII}$)
5) Calculate the corresponding collector currents $\mathrm{I}_{\mathrm{C}}\left(\mathrm{I}_{\mathrm{C}}=\mathrm{VI} / \mathrm{R}\right.$; $R=100 \Omega$)
6) Repeat the procedure for the base currents $200 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 400$ $\mu \mathrm{A}$, and $500 \mu \mathrm{~A}$.

$\mathrm{V}_{\mathbf{C E}}$	$\mathrm{I}_{\mathrm{B}}=100 \mu \mathrm{~A}$		$\mathrm{I}_{\mathrm{B}}=200 \mu \mathrm{~A}$		IB $=300 \mu \mathrm{~A}$		IB $=400 \mu \mathrm{~A}$		$1 \mathrm{~B}=500$	
[V]	$\begin{gathered} \text { VI } \\ {[\mathrm{V}]} \end{gathered}$	$\begin{gathered} \mathrm{IC} \\ {[\mathrm{~mA}]} \end{gathered}$	$\begin{gathered} \mathrm{VI} \\ {[\mathrm{~V}]} \end{gathered}$	$\begin{gathered} \mathrm{IC} \\ \lceil\mathrm{~mA}\rceil \end{gathered}$	$\begin{gathered} \text { VI } \\ {[\mathrm{V}]} \end{gathered}$	$\begin{gathered} \mathrm{IC} \\ {[\mathrm{~mA}]} \end{gathered}$	$\begin{gathered} \text { VI } \\ {[\mathrm{V}]} \end{gathered}$	$\begin{gathered} \mathrm{IC} \\ {[\mathrm{~mA}]} \end{gathered}$	$\begin{gathered} \mathrm{VI} \\ {[\mathrm{~V}]} \end{gathered}$	$\begin{gathered} \mathrm{IC} \\ {[\mathrm{~mA}]} \end{gathered}$
0.2										
0.5										
1.0										
2.0										
4.0										
6.0										
8.0										

Tab. 2
7) Draw the characteristics from the values recorded in Tables 2.

