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The Riez Theorem

Let H be real a Hilbert space with inner product ⟨ , ⟩ and norm ∥ ∥.

Theorem

(Projection Theorem)
If K is a closed subspace of H, x a vector and
d = inf{∥y − x∥; y ∈ K}, then there exists a unique vector z ∈ K
such that ∥z − x∥ = d . Moreover z − x is orthogonal to K . (z is
called the orthogonal projection of x on K and denoted by pK (x))
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Proof

Let (xn)n be a sequence of K such that lim
n→+∞

||x − xn|| = d . It

follows from the parallelogram law (||x+y ||2+||x−y ||2 = 2(||x ||2+
||y ||2) applied to the vectors x − xn and x − xm that

||xn − xm||2 = 2(||xn − x ||2 + ||xm − x ||2)− ||xn + xm − 2x ||2

lim
n→+∞

||xn−x ||2 = d2 and ||xn+xm−2x ||2 = 4|| xn+xm
2 −x ||2 ≥ 4d2

because xn+xm
2 ∈ K . Then (xn)n is a Cauchy sequence in K which

is complete, then it converges in K . If lim
n→+∞

xn = z ∈ K then by

continuity ||x − y || = d . If z ′ ∈ K is such that ||x − z ′|| = d , then
from the parallelogram law

||z − z ′||2 = 2(||z − x ||2 + ||z ′ − x ||2)− 4||z + z ′

2
− x ||2,
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which proves that ||z − z ′|| ≤ 0 and z = z ′.
Let t ∈ R and y ∈ K ∗, pK (x)− ty ∈ K , therefore

∥x − pK (x)∥2 ≤ ∥x − pK (x)− ty∥2.

This inequality simplifies to

t2∥y∥2 − 2t⟨y , x − pK (x)⟩ ≥ 0.

Taking in particular t =
⟨x − pK (x), y⟩

∥y∥2
, it obtains that 0 ≤ −⟨x −

pK (x), y⟩2∥y∥2, hence that x − pK (x) ⊥ K .
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Corollary

(Orthogonal Decomposition)
Let K be a closed subspace of H. Then every vector x can be
written in a unique way as a sum

x = T (x) + P(x),

where T (x) ∈ K and P(x) ⊥ K .

Theorem

(Riesz Representation)
If L is a continuous linear functional on H, then there exists a
unique vector z ∈ H such that

L(x) = ⟨x , z⟩, ∀ x ∈ H.
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Proof

If L(x) = 0 for every x ∈ H, then take z = 0.
Assume thus L is not identically 0. Let K = {x ∈ H; L(x) = 0}.
Then K is a closed subspace of H. Since L ̸= 0, then K ̸= H.
Thus, by Corollary (6), there exits a non-zero vector y ∈ H such that
y ∈ K⊥. It may be assumed that ∥y∥ = 1. Put u = L(x)y −L(y)x .
Then u ∈ K because L(u) = L(x)L(y) − L(y)L(x) = 0. Therefore
⟨u, y⟩ = 0. But ⟨u, y⟩ = ⟨L(x)y − L(y)x , y⟩ = L(x)− L(y)⟨x , y⟩ so
that L(x) = L(y)⟨x , y⟩. Hence, L(x) = ⟨x , z⟩ with z = L(y)y . To
see that z is unique, note that if ⟨x , z⟩ = ⟨x , z ′⟩ for all x ∈ H, then
u = z − z ′ is such that ⟨x , u⟩ = 0 for all x ∈ H, hence u = 0.
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Lebesgue Decomposition Theorem and Radon-Nikodym
Theorem

Definition

1 Let (X ,A ) be a measurable space and let µ and ν be two
measures on (X ,A ). We say that ν is absolutely continuous
with respect to µ, in symbols ν << µ, if ν(A) = 0 whenever
µ(A) = 0.

2 A measure on (Rn,BRn) is called absolutely continuous if it is
absolutely continuous with respect to the Lebesgue measure
on Rn.
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Remark

If f is a non-negative µ−integrable function on X , then ν(E ) =∫
E
f (x)dµ(x) defines a measure on X which is absolutely continuous

with respect to µ.
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Definition

Let (X ,A ) be a measurable space and let µ and ν be two
measures on (X ,A ).
• The measure ν is said to be concentrated on E if
ν(A) = ν(E ∩ A) for all A ∈ A .
• µ and ν are said to be mutually singular, in symbols µ ⊥ ν, if
there exist disjoint measurable subsets E and F such that
X = E ∪ F and µ(E ) = 0, ν(F ) = 0.
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Theorem

(Lebesgue Decomposition Theorem and Radon-Nikodym Theorem)
Let (X ,A , µ) be a measurable space and µ σ−finite. If ν is a
σ−finite measure on (X ,A ), there exist unique measures νa and
νs such that ν = νa + νs , νa << µ and νs ⊥ µ.
Moreover there exits a unique g ∈ L1(X ,A , µ) such that

νa(A) =

∫
A
g(x)dµ(x), ∀ A ∈ A .
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Proof
Uniqueness

Let (νa, νs) and (ν ′a, ν
′
s) be two solutions, then

∀A ∈ A , νa(A)− ν ′a(A) = ν ′s(A)− νs(A).

Since νs and ν ′s are singular with respect to µ, there exist two µ null
sets E and E ′ such that νs(E

c) = 0 and ν ′s(E
′c) = 0 and

∀A ∈ A , νs(A)−ν ′s(A) = νs(A∩(E∪E ′))−ν ′s(A∩(E∪E ′)) = ν ′a(A∩(E∪E ′))−νa(A∩(E∪E ′)) = 0

since νa << µ and ν ′a << µ.
To obtain the uniqueness of g , let g ′ an other solution, then∫
{t; g ′(t)>g(t)}

g ′(x)dµ(x) = νa({t; g ′(t) > g(t)}) =
∫
{t; g ′(t)>g(t)}

g(x)dµ(x).

Then ∫
{t; g ′(t)>g(t)}

(g ′(x)− g(x))dµ(x) = 0

then g ′ ≤ g , µ− a.e and by symmetry, g = g ′, µ− a.e.
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Existence In the first case we assume that the measures µ and ν
are finite. Let H be the Hilbert space H = L2(X ,A, µ+ ν). Since
the measures µ and ν are finite, so is µ+ ν. Moreover, if f ∈ H, by
Hölder inequality

∣∣∣∣∫
X
f (x)dν(x)

∣∣∣∣ ≤ ∫
X
|f (x)|d(µ+ν)(x) ≤

(∫
X
f 2(x)dν(x)

) 1
2

(µ+ν)(X ))
1
2 ,

then f ∈ L2(X , ν) and

f ∈ H 7−→
∫
X
f (x)dν(x)

is a continuous linear functional on H, because ν ≤ µ + ν. By
Theorem (6), there exists g ∈ H such that∫

X
f (x)dν(x) =

∫
X
f (x)g(x)d(µ+ ν)(x),

for all f ∈ H. In particular for all A ∈ A such that (µ+ ν)(A) ̸= 0

0 ≤ 1

(µ+ ν)(A)

∫
A
g(x)d(µ+ ν)(x) ≤ ν(A)

(µ+ ν)(A)
≤ 1,

which proves that 0 ≤ g ≤ 1 (µ+ ν) a.e.
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For ε > 0 let F = {x ; g(x) > ε}, (µ + ν)(F ) ≥
∫
F
g(x)d(µ +

ν)(x) ≥ (1 + ε)(mu + ν)(F ) ⇒ (mu + ν)(F ) = 0.

Let G = {x ; g(x) < −ε}, 0 ≥
∫
G
g(x)d(µ + ν)(x) ≤ −ε(mu +

ν)(G ) ⇒ (mu + ν)(G ) = 0.
We can assume that 0 ≤ g ≤ 1 on X . Then
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∫
X
(1−g)(x)f (x)dν(x) =

∫
X
f (x)g(x)dµ(x), ∀f ∈ L2(X ,A , µ+ν).

(1)
We set A = {x ∈ X ; 0 ≤ g(x) < 1} and B = {x ∈ X ; g(x) = 1},
νa(E ) = ν(E ∩ A) and νs(E ) = ν(E ∩ B) for all E ∈ A . We apply
the equation (1) to f = χB , we find µ(B) = 0 which proves that
νs ⊥ µ.
We apply the equation (1) to f = (1 + g + . . .+ gn)χE , we find∫

E
(1− gn+1)(x)dν(x) =

∫
E
(g + g2 + . . .+ gn+1)(x)dµ(x).

By Monotone Convergence Theorem lim
n→+∞

∫
E
(1−gn+1)(x)dν(x) =

ν(E ∩A) = νa(E ). Moreover the sequence (g + g2 + . . .+ gn+1) is
increasing and converges to a function h and

lim
n→+∞

∫
E
(g + g2 + . . .+ gn+1)(x)dµ(x) =

∫
E
h(x)dµ(x).Mongi BLEL The Radon-Nikodym Theorem
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We assume now that ν is finite and µ σ−finite. Let (En)n be a
disjoint sequence of measurable sets such that µ(En) < +∞ and
X = ∪∞

n=1En. The previous case proves that there exists a measur-
able function hn ∈ L1(X ,A ∩En, µ↾En ) such that ν↾En = hnµ↾En+νs,n.

We define h =
∞∑
n=1

hnχEn , νs =
∞∑
n=1

nus,n and the conclusion is valid

because h ∈ L1(X ,A , µ) since ν(X ) < +∞.
We assume now that µ and ν are σ−finite. As in the second case
there exist a disjoint sequence of measurable sets (En)n such that
µ(En) < +∞, ν(En) < +∞ and X = ∪∞

n=1En. The previous
case proves that for all n ∈ N, there exists a measurable function
hn ∈ L1(X ,A ∩ En, µ↾En ) such that ν↾En = hnµ↾En + νs,n. We take

h =
∞∑
n=1

hnχEn, νs =
∞∑
n=1

νs,n.
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The function h obtained in this theorem is called the Radon-Nikodym

derivative of ν with respect to µ, and it is usually denoted by
dν

dµ
.

The justification for this notation is that it satisfies familiar calculus
properties.

Mongi BLEL The Radon-Nikodym Theorem



The Riez Theorem
Lebesgue Decomposition Theorem and Radon-Nikodym Theorem

Remark

Let X = [0, 1] and f : [0, 1] −→ [0, 1] be a differentiable function
whose derivative is bounded and nowhere zero. If λ is the Lebesgue
measure on [0, 1], then ν(E ) = λ(f −1E ) is a measure on [0, 1] which
is absolutely continuous with respect to λ, and the Radon-Nikodym

derivative
dν

dλ
is |f ′(x)|. This is deduced by the Change of Variable

Theorem.
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Remark

If we remove the assumption that the measure are σ−finite the
conclusion of the Theorem (11) can be false. Let X = [0, 1], λ the
Lebesgue measure and ν the counting measure on X . λ << ν but
there exit no function h such that λ = hν.
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