The Riez Theorem Lebesgue Decomposition Theorem and Radon-Nikodym Theorem

The Radon-Nikodym Theorem

Mongi BLEL

King Saud University

March 27, 2024

The Riez Theorem Lebesgue Decomposition Theorem and Radon-Nikodym Theorem

Table of contents

2 Lebesgue Decomposition Theorem and Radon-Nikodym Theorem

The Riez Theorem

Let *H* be real a Hilbert space with inner product \langle , \rangle and norm || ||.

Theorem

(Projection Theorem) If K is a closed subspace of H, x a vector and $d = \inf\{||y - x||; y \in K\}$, then there exists a unique vector $z \in K$ such that ||z - x|| = d. Moreover z - x is orthogonal to K. (z is called the orthogonal projection of x on K and denoted by $p_K(x)$)

Proof

Let $(x_n)_n$ be a sequence of K such that $\lim_{n \to +\infty} ||x - x_n|| = d$. It follows from the parallelogram law $(||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$ applied to the vectors $x - x_n$ and $x - x_m$ that

$$||x_n - x_m||^2 = 2(||x_n - x||^2 + ||x_m - x||^2) - ||x_n + x_m - 2x||^2$$

 $\lim_{n \to +\infty} ||x_n - x||^2 = d^2 \text{ and } ||x_n + x_m - 2x||^2 = 4||\frac{x_n + x_m}{2} - x||^2 \ge 4d^2$ because $\frac{x_n + x_m}{2} \in K$. Then $(x_n)_n$ is a Cauchy sequence in K which is complete, then it converges in K. If $\lim_{n \to +\infty} x_n = z \in K$ then by continuity ||x - y|| = d. If $z' \in K$ is such that ||x - z'|| = d, then from the parallelogram law

$$||z - z'||^2 = 2(||z - x||^2 + ||z' - x||^2) - 4||\frac{z + z'}{2} - x||^2,$$

which proves that $||z - z'|| \le 0$ and z = z'. Let $t \in \mathbb{R}$ and $y \in K^*$, $p_K(x) - ty \in K$, therefore

$$||x - p_{\mathcal{K}}(x)||^2 \le ||x - p_{\mathcal{K}}(x) - ty||^2.$$

This inequality simplifies to

$$t^2 \|y\|^2 - 2t \langle y, x - p_{\mathcal{K}}(x) \rangle \geq 0.$$

Taking in particular $t = \frac{\langle x - p_{\mathcal{K}}(x), y \rangle}{\|y\|^2}$, it obtains that $0 \le -\langle x - p_{\mathcal{K}}(x), y \rangle^2 \|y\|^2$, hence that $x - p_{\mathcal{K}}(x) \perp \mathcal{K}$. \Box

Corollary

(Orthogonal Decomposition)

Let K be a closed subspace of H. Then every vector x can be written in a unique way as a sum

$$x=T(x)+P(x),$$

where $T(x) \in K$ and $P(x) \perp K$.

Theorem

(Riesz Representation) If L is a continuous linear functional on H, then there exists a unique vector $z \in H$ such that

$$L(x) = \langle x, z \rangle, \quad \forall \ x \in H.$$

Proof

If L(x) = 0 for every $x \in H$, then take z = 0. Assume thus L is not identically 0. Let $K = \{x \in H; L(x) = 0\}$. Then K is a closed subspace of H. Since $L \neq 0$, then $K \neq H$. Thus, by Corollary (6), there exits a non-zero vector $y \in H$ such that $y \in K^{\perp}$. It may be assumed that ||y|| = 1. Put u = L(x)y - L(y)x. Then $u \in K$ because L(u) = L(x)L(y) - L(y)L(x) = 0. Therefore $\langle u, y \rangle = 0$. But $\langle u, y \rangle = \langle L(x)y - L(y)x, y \rangle = L(x) - L(y)\langle x, y \rangle$ so that $L(x) = L(y)\langle x, y \rangle$. Hence, $L(x) = \langle x, z \rangle$ with z = L(y)y. To see that z is unique, note that if $\langle x, z \rangle = \langle x, z' \rangle$ for all $x \in H$, then u = z - z' is such that $\langle x, u \rangle = 0$ for all $x \in H$, hence u = 0. The Riez Theorem Lebesgue Decomposition Theorem and Radon-Nikodym Theorer

Lebesgue Decomposition Theorem and Radon-Nikodym Theorem

Definition

- Let (X, A) be a measurable space and let μ and ν be two measures on (X, A). We say that ν is absolutely continuous with respect to μ, in symbols ν << μ, if ν(A) = 0 whenever μ(A) = 0.
- A measure on (ℝⁿ, ℬ_{ℝⁿ}) is called absolutely continuous if it is absolutely continuous with respect to the Lebesgue measure on ℝⁿ.

Remark

If f is a non-negative μ -integrable function on X, then $\nu(E) = \int_{E} f(x)d\mu(x)$ defines a measure on X which is absolutely continuous with respect to μ .

Definition

Let (X, \mathscr{A}) be a measurable space and let μ and ν be two measures on (X, \mathscr{A}) .

• The measure ν is said to be concentrated on E if $\nu(A) = \nu(E \cap A)$ for all $A \in \mathscr{A}$.

• μ and ν are said to be mutually singular, in symbols $\mu \perp \nu$, if there exist disjoint measurable subsets E and F such that $X = E \cup F$ and $\mu(E) = 0$, $\nu(F) = 0$.

Theorem

(Lebesgue Decomposition Theorem and Radon-Nikodym Theorem) Let (X, \mathscr{A}, μ) be a measurable space and $\mu \sigma$ -finite. If ν is a σ -finite measure on (X, \mathscr{A}) , there exist unique measures ν_a and ν_s such that $\nu = \nu_a + \nu_s$, $\nu_a << \mu$ and $\nu_s \perp \mu$. Moreover there exits a unique $g \in L^1(X, \mathscr{A}, \mu)$ such that

$$u_{a}(A) = \int_{A} g(x) d\mu(x), \quad \forall \ A \in \mathscr{A}.$$

Proof Uniqueness

Let $(\nu_{\textit{a}},\nu_{\textit{s}})$ and $(\nu_{\textit{a}}',\nu_{\textit{s}}')$ be two solutions, then

$$\forall A \in \mathscr{A}, \quad \nu_{a}(A) - \nu_{a}'(A) = \nu_{s}'(A) - \nu_{s}(A).$$

Since ν_s and ν'_s are singular with respect to μ , there exist two μ null sets E and E' such that $\nu_s(E^c) = 0$ and $\nu'_s(E^{\prime c}) = 0$ and

$$\forall A \in \mathscr{A}, \quad \nu_s(A) - \nu'_s(A) = \nu_s(A \cap (E \cup E')) - \nu'_s(A \cap (E \cup E')) = \nu'_a(A \cap (E \cup E'))$$

since $\nu_a << \mu$ and $\nu'_a << \mu$.
To obtain the uniqueness of g, let g' an other solution, then

$$\int_{\{t; g'(t) > g(t)\}} g'(x) d\mu(x) = \nu_a(\{t; g'(t) > g(t)\}) = \int_{\{t; g'(t) > g(t)\}} g(x) d\mu(x) = 0$$
Then
$$\int_{\text{MODEL BICK}} (g'(x) - g(x)) d\mu(x) = 0$$
The Radon Nicolum Theorem

Existence In the first case we assume that the measures μ and ν are finite. Let H be the Hilbert space $H = L^2(X, \mathscr{A}, \mu + \nu)$. Since the measures μ and ν are finite, so is $\mu + \nu$. Moreover, if $f \in H$, by Hölder inequality

$$\left|\int_{X} f(x)d\nu(x)\right| \leq \int_{X} |f(x)|d(\mu+\nu)(x) \leq \left(\int_{X} f^{2}(x)d\nu(x)\right)^{\frac{1}{2}}(\mu+\nu)(X))$$

then $f \in L^{2}(X,\nu)$ and

$$f\in H\longmapsto \int_X f(x)d\nu(x)$$

is a continuous linear functional on H, because $\nu \leq \mu + \nu$. By Theorem (6), there exists $g \in H$ such that

$$\int_X f(x)d\nu(x) = \int_X f(x)g(x)d(\mu+\nu)(x),$$

for all $f \in H$. In particular for all $A \in \mathscr{A}$ such that $(\mu + \nu)(A) \neq 0$

For
$$\varepsilon > 0$$
 let $F = \{x; g(x) > \varepsilon\}, (\mu + \nu)(F) \ge \int_F g(x)d(\mu + \nu)(x) \ge (1 + \varepsilon)(mu + \nu)(F) \Rightarrow (mu + \nu)(F) = 0.$
Let $G = \{x; g(x) < -\varepsilon\}, 0 \ge \int_G g(x)d(\mu + \nu)(x) \le -\varepsilon(mu + \nu)(G) \Rightarrow (mu + \nu)(G) = 0.$
We can assume that $0 \le g \le 1$ on X . Then

٠

$$\int_{X} (1-g)(x)f(x)d\nu(x) = \int_{X} f(x)g(x)d\mu(x), \quad \forall f \in L^{2}(X, \mathscr{A}, \mu+\nu).$$

We set $A = \{x \in X; 0 \le g(x) < 1\}$ and $B = \{x \in X; g(x) = 1\}$, $\nu_a(E) = \nu(E \cap A)$ and $\nu_s(E) = \nu(E \cap B)$ for all $E \in \mathscr{A}$. We apply the equation (1) to $f = \chi_B$, we find $\mu(B) = 0$ which proves that $\nu_s \perp \mu$.

We apply the equation (1) to $f = (1 + g + \ldots + g^n)\chi_E$, we find

$$\int_{E} (1-g^{n+1})(x)d\nu(x) = \int_{E} (g+g^{2}+\ldots+g^{n+1})(x)d\mu(x).$$

By Monotone Convergence Theorem $\lim_{n \to +\infty} \int_E (1-g^{n+1})(x) d\nu(x) = \nu(E \cap A) = \nu_a(E)$. Moreover the sequence $(g + g^2 + \ldots + g^{n+1})$ is increasing and converges to a function h and

im
$$\int (\sigma + \sigma^2 + \mu + \sigma^{n+1})(x) d\mu(x) = \int h(x) d\mu(x)$$

The Radon-Nikodym Theorem

We assume now that ν is finite and $\mu \sigma$ -finite. Let $(E_n)_n$ be a disjoint sequence of measurable sets such that $\mu(E_n) < +\infty$ and $X = \bigcup_{n=1}^{\infty} E_n$. The previous case proves that there exists a measurable function $h_n \in L^1(X, \mathscr{A} \cap E_n, \mu_{\upharpoonright E_n})$ such that $\nu_{\upharpoonright E_n} = h_n \mu_{\upharpoonright E_n} + \nu_{s,n}$. We define $h = \sum_{n=1}^{\infty} h_n \chi_{E_n}$, $\nu_s = \sum_{n=1}^{\infty} n u_{s,n}$ and the conclusion is valid because $h \in L^1(X, \mathscr{A}, \mu)$ since $\nu(X) < +\infty$. We assume now that μ and ν are σ -finite. As in the second case there exist a disjoint sequence of measurable sets $(E_n)_n$ such that $\mu(E_n) < +\infty, \ \nu(E_n) < +\infty$ and $X = \bigcup_{n=1}^{\infty} E_n$. The previous case proves that for all $n \in \mathbb{N}$, there exists a measurable function $h_n \in L^1(X, \mathscr{A} \cap E_n, \mu_{\restriction E_n})$ such that $\nu_{\restriction E_n} = h_n \mu_{\restriction E_n} + \nu_{s,n}$. We take $h=\sum_{n=1}^{\infty}h_{n}\chi E_{n}, \ \nu_{s}=\sum_{n=1}^{\infty}\nu_{s,n}.$

The function h obtained in this theorem is called the Radon-Nikodym derivative of ν with respect to μ , and it is usually denoted by $\frac{d\nu}{d\mu}$. The justification for this notation is that it satisfies familiar calculus properties.

Remark

Let X = [0, 1] and $f : [0, 1] \longrightarrow [0, 1]$ be a differentiable function whose derivative is bounded and nowhere zero. If λ is the Lebesgue measure on [0, 1], then $\nu(E) = \lambda(f^{-1}E)$ is a measure on [0, 1] which is absolutely continuous with respect to λ , and the Radon-Nikodym derivative $\frac{d\nu}{d\lambda}$ is |f'(x)|. This is deduced by the Change of Variable Theorem. Remark

If we remove the assumption that the measure are σ -finite the conclusion of the Theorem (11) can be false. Let X = [0, 1], λ the Lebesgue measure and ν the counting measure on X. $\lambda \ll \nu$ but there exit no function h such that $\lambda = h\nu$.