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6.1 Inner Products



Points and Vectors in 𝑹𝒏





Vector Addition and Subtraction Geometrically





Length and Dot Product in R
n

◼ Length:

The length of a vector                              in R
n
 is given by
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◼ Properties of length (or norm)
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◼ Note: The length of a vector is also called its norm



Example:

(a) In R5, the length of                                        is given by 

(b) In R3, the length of                                    is given by 
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(If the length of v is 1, then v is a unit vector)



A standard unit vector in R
n
: only one component of the vector is 1 

and the others are 0 (thus the length of this vector must be 1)
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u and v have the same direction

u and v have the opposite directions

Notes: Two nonzero vectors are parallel if 
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Theorem: Length of a scalar multiple

Let v be a vector in R
n and c be a scalar. Then
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Proof:
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Theorem: How to find the unit vector in the direction of v

If v is a nonzero vector in R
n
, then the vector

has length 1 and has the same direction as v. This vector u 

is called the unit vector in the direction of v
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Notes:

     (1) The vector           is called the unit vector in the direction of v

     (2) The process of finding the unit vector in the direction of v 

           is called normalizing the vector v
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v



Example: Finding a unit vector

Find the unit vector in the direction of v = (3, –1, 2), and verify 

that this vector has length 1
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Solution:



◼ Distance between two vectors:

The distance between two vectors u and v in R
n
 is 

||||),( vuvu −=d

◼ Properties of distance

(1)

(2)                       if and only if u = v

(3)
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),(),( uvvu dd = (commutative property of the distance function)



Definition:  Dot product in R
n

The dot product of                                    and 

returns a scalar quantity

Example: Finding the dot product of two vectors

The dot product of u = (1, 2, 0, –3) and v = (3, –2, 4, 2) is
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(The dot product is defined as the sum of component-by-component 

multiplications)



Theorem:  Properties of the dot product

 If  u, v, and w are vectors in R
n
 and c is a scalar, 

  then the following properties are true

  (1)

  (2)

  (3)

  (4)
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※ The proofs of the above properties simply follow the definition of the 

dot product in R
n

(commutative property of the dot product)

(distributive property of the dot product 

over vector addition)

(associative property of the scalar 

multiplication and the dot product)

(straightforwardly true according to (4))



Euclidean n-space:

When R
n
 is combined with the standard operations of vector 

addition, scalar multiplication, vector length, and dot product, 

the resulting vector space is called Euclidean n-space



Solution:
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Example: Computations With Dot Products

Compute the following for:
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Theorem: The Cauchy-Schwarz inequality

 If u and v are vectors in R
n
, then
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Example:  Verifying Cauchy-Schwarz inequality

            Verify the Cauchy-Schwarz inequality for u = (1, –1, 3) 

             and v = (2, 0, –1).

Solution:

Proof: A more general proof will be given later.



◼ Dot product and the angle between two vectors

To find the angle                       between two nonzero vectors 

u = (u1, u2) and v = (v1, v2) in R2, the Law of Cosines can be 

applied to the following triangle to obtain

 

)0(  

cos2
222

uvuvuv −+=−

uv

vu

uv

u

v

uv


=

+
=

+=

+=

−+−=−

2211

2

2

2

1

2

2

2

2

1

2

2

22

2

11

2

cos 

         

         

)()(

vuvu

uu

vv

vuvu







Note:

The angle between the zero vector and another vector is 

not defined (since the denominator cannot be zero)

◼ The angle between two nonzero vectors in R
n
:
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Example: Finding the angle between two vectors
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(In fact, u = –2v and as discussed, u and v 

are parallel and with different directions)



◼ Orthogonal vectors:

Two vectors u and v in R
n
 are orthogonal (perpendicular) if  

0= vu

◼ Note:

The vector 0 is said to be orthogonal to every vector



Example:  Finding orthogonal vectors

 Determine all vectors in R
n
 that are orthogonal to u = (4, 2)
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Solution:



Theorem:  The Triangle Inequality 

If u and v are vectors in R
n
, then |||||||||||| vuvu ++

Proof:
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Note:

Equality occurs in the triangle inequality if and only if 

the vectors u and v have the same direction (in this 

situation, cos θ = 1 and thus                             ) 0 = u v u v

(c  |c|)

(Cauchy-Schwarz inequality)

(The geometric representation of the triangle inequality: 

for any triangle, the sum of the lengths of any two sides is 

larger than the length of the third side (see the next slide))



Theorem: The Pythagorean theorem

If u and v are vectors in R
n
, then u and v are orthogonal

if and only if   
2 2 2|| || || || || ||+ = +u v u v

(This is because u·v = 0 in the 

proof for the last Theorem) 

|| || || || || ||+  +u v u v 2 2 2|| || || || || ||+ = +u v u v

※ The geometric meaning: for any right triangle, the sum of the squares of the lengths of 

two legs equals the square of the length of the hypotenuse.



Definition:  Inner Product Space 

(1)

         (2)

         (3)

         (4)          

         (5)                     if and only if 
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Let u, v, and w be vectors in a vector space V, and let c be 

any scalar. An inner product on V is a function that associates 

a real number               with each pair of vectors u and v and 

satisfies the following axioms (abstraction definition from 

the properties of dot product)

(commutative property of the inner product)

(distributive property of the inner product 

over vector addition)

(associative property of the scalar multiplication and the 

inner product)

,u v〈 〉

(straightforwardly true according to (4))



Note:

      dot product (Euclidean inner product for ) 

 , general inner product for a vector space 

nR

V

 =

 =

u v
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Note:

A vector space V with an inner product is called an inner product space

Vector space:

Inner product space:

( ,  ,  )V + 

( ,  ,   ,  ,  >)V +  



Example:  The Euclidean inner product for R
n

Show that the dot product in R
n
 satisfies the four axioms of an inner product.
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Solution:

By a previous Theorem, this dot product satisfies the required four axioms. Thus, 

the dot product can be a sort of inner product in R
n



Example: A different inner product for R
n

Show that the following function defines an inner product 

on R2. Given                     and                   ,
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Note: This example can be generalized such that 

  can be an inner product on R
n

1 1 1 2 2 2 where all 0, ,n n inc u v c u u v cv c = + + + u v 

1 1 2 2 1 1 2 2(3)   , ( 2 ) ( ) 2( ) ,c c u v u v cu v cu v c= + = + =u v u v〈 〉 〈 〉

2 2
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Example: A function that is not an inner product

Show that the following function is not an inner product on R3

1 1 2 2 3 3, 2u v u v u v= − +u v〈 〉

Solution:

Let )1,2,1(=v

Then , (1)(1) 2(2)(2) (1)(1) 6 0= − + = − v v〈 〉

Axiom 4 is not satisfied 

Thus this function is not an inner product on R3















Theorem: Properties of inner products

Let u, v, and w be vectors in an inner product space V, and 

let c be any real number

 (1)

 (2)

 (3)

, , 0= =0 v v 0〈 〉〈 〉

, , ,+ = +u v w u w v w〈 〉〈 〉〈 〉

, ,c c=u v u v〈 〉 〈 〉

※ To prove these properties, you can use only the four axioms for 

defining an inner product

Proof:
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u and v are orthogonal if                     

◼ Distance between u and v:

−−=−= vuvuvuvu ,||||),(d

◼ Angle between two nonzero vectors u and v:
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◼ Orthogonal:
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◼ Length of u: 
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Definition of length, distance, angle, orthogonal, and normalizing for general inner 

product spaces is a generalization to those based on the dot product in Euclidean n-space



◼ Normalizing vectors

(1) If              , then v is called a unit vector 

(2)

1|||| =v

v 0 Normalizing⎯⎯⎯⎯→
v

v (the unit vector in the 

 direction of v)

(if v is not a 

zero vector)

(Note that        is defined as              )v ,v v



Example: An inner product in the polynomial space

2 2
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◼ Properties of norm: (the same as the properties for the dot 

product in R
n
)

(1)

(2)                 if and only if 

(3)

◼ Properties of distance: (the same as the properties for the dot 

product in R
n
)

(1)

(2)                        if and only if 

(3)
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Theorem：

Let u and v be vectors in an inner product space V

(1) Cauchy-Schwarz inequality:

 

(2) Triangle inequality:

 

(3) Pythagorean theorem: 

  u and v are orthogonal if and only if   

(4) Parallelogram Identity: 
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Proof: Cauchy-Schwarz inequality
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Proof of Parallelogram Identity:
2 2 2 2
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Orthonormal Bases: Gram-Schmidt Process 

◼ Orthogonal set:

A set S of vectors in an inner product space V is called an 

orthogonal set if every pair of vectors in the set is orthogonal

◼ Orthonormal set:

An orthogonal set  in which each vector is a unit vector is 

called orthonormal set
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Note:

– If S is also a basis, then it is called an orthogonal basis or 

an orthonormal basis

– The standard basis for R
n
 is orthonormal. For example,

is an orthonormal basis for R3

◼ This section identifies some advantages of orthonormal bases, 

and develops a procedure for constructing such bases, known 

as Gram-Schmidt orthonormalization process

 )100()010()001( ,,,,,,,,S =



Example: A nonstandard orthonormal basis for R3

Show that the following set is an orthonormal basis
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Solution:

First, note that the three vectors are mutually orthogonal 
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Second, note that each vector is of length 1 

Thus, S is an orthonormal set
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Because these three vectors are linearly independent (you can 

check by solving c1v1 + c2v2 + c3v3 = 0) in R3 (of dimension 3), by 

Theorem (given a vector space with dimension n, then n linearly 

independent vectors can form a basis for this vector space), these 

three linearly independent vectors form a basis for R3. 

 S is a (nonstandard) orthonormal basis for R3



the standard basis                       is orthonormal

Example: An orthonormal basis for P2(x)

In          , with the inner product                                        ,221100, bababaqp ++=

} , ,1{ 2xxB =

2 ( )P x

Solution:
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Theorem: Orthogonal sets are linearly independent

If                                  is an orthogonal set of nonzero vectors in 

an inner product space V, then S is linearly independent 

Proof:

 S  is an orthogonal set of nonzero vectors,

i.e., , 0 for ,  and , 0i j i ii j  =    v v v v

1 1 2 2

1 1 2 2

For  

, , 0

n n

n n i i

c c c

c c c i

+ + + =

  + + +  =   = 

v v v 0

v v v v 0 v




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, 0   0       is linearly independenti i ic i S    =  v v

(If there is only the trivial solution for ci’s, 

i.e., all ci’s are 0, S is linearly independent) 

(because S is an orthogonal set of nonzero vectors) 

},,,{ 21 nS vvv =



Corollary:

If V is an inner product space with dimension n, then any 

orthogonal set of n nonzero vectors is a basis for V.

1. By a Theorem , if S = {v1, v2, …, vn} is an orthogonal set nonzero vectors, 

then S is linearly independent.

2. According to a previous Theorem, if S = {v1, v2, …, vn} is a linearly 

independent set of n vectors in V (with dimension n), then S is a basis for V .

※ Based on the above two arguments, it is straightforward to derive the 

above corollary.

Proof:



Example: Using orthogonality to test for a basis

    Show that the following set is a basis for      
4R

)}1,1,2,1(,)1,2,0,1(,)1,0,0,1(,)2,2,3,2{(

4321

−−−−=S

vvvv

Solution:

         

02262

02402

02002

41

31

21

=−−+−=

=−++−=

=−++=

vv

vv

vv

1 2 3 4, , , : nonzero vectorsv v v v

01201

01001

01001

43

42

32

=+−+=

=+++−=

=+++−=

vv

vv

vv

orthogonal is S

4for  basis a is RS (by Corollary)

※ This shows an advantage of introducing the concept of orthogonal vectors, i.e., 

it is not necessary to solve linear systems to test whether S is a basis if S is a set 

of orthogonal vectors.



Theorem: Coordinates relative to an orthonormal basis

If                                   is an orthonormal basis for an inner 

product space V, then the unique coordinate representation of a 

vector w with respect to B is

},,,{ 21 nB vvv =

1
Since , ,  then

0
i j

i j

i j

=
  = 


v v

Vkkk nn +++= vvvw 2211
(unique representation from Thm. 4.9)

Proof:

                       is an orthonormal basis for V

1 1 2 2, , , n n=   +   + +  w w v v w v v w v v

※ The above theorem tells us that it is easy to derive the coordinate 

representation of a vector relative to an orthonormal basis, which is 

another advantage of using orthonormal bases

},,,{ 21 nB vvv =



1 1 2 2

1 1

, ( ),

, , ,

            for  = 1 to 

i n n i

i i i i n n i

i

k k k

k k k

k i n

= + + +

= + + + +

=

w v v v v v

v v v v v v





nn vvwvvwvvww +++= ,,, 2211 

Note:

If                                  is an orthonormal basis for V and           , },,,{ 21 nB vvv = Vw

Then the corresponding coordinate matrix of w relative to B is 

 

























=

n

B

vw

vw

vw

w

,

,

,

2

1





Example: Coordinates relative to an orthonormal basis

For w = (5, –5, 2), find its coordinates relative to the standard basis for R3       

2)1,0,0()2,5,5(,

5)0,1,0()2,5,5(,

5)0,0,1()2,5,5(,

33

22

11

=−==

−=−==

=−==

vwvw

vwvw

vwvw

















−=

2

5

5

][ Bw

※ In fact, it is not necessary to use Thm. to find the coordinates relative to the 

standard basis, because we know that the coordinates of a vector relative to 

the standard basis are the same as the components of that vector.

※ The advantage of the orthonormal basis emerges when we try to find the 

coordinate matrix of a vector relative to a nonstandard orthonormal basis 

(see the next slide).



Example: Representing vectors relative to an orthonormal basis

Find the coordinates of  w = (5, –5, 2) relative to the following 

orthonormal basis for       

)}1,0,0(,)0,,(,)0,,{(
5
3

5
4

5
4

5
3 −=B

3R

Solution:

2)1,0,0()2,5,5(,

7)0,,()2,5,5(,

1)0,,()2,5,5(,

33

5
3

5
4

22

5
4

5
3

11

=−==

−=−−==

−=−==

vwvw

vwvw

vwvw

















−

−

=

2

7

1

][ Bw

1v 2v 3v



Gram-Schmidt orthonormalization process:

                           is a basis for an inner product space V  },,,{ 21 nB vvv =

11Let vw =

},,,{' 21 nB www =

1 2

1 2

'' { , , , }n

n

B =
ww w

w w w


is an orthogonal basis

is an orthonormal basis

1

1

 

−

=

= −



n
n i

n n i

i i i

v , w
w v w

w , w

3 1 3 2

3 3 1 2

1 1 2 2

= − −
v , w v , w

w v w w
w , w w , w

2 1

2 2 1

1 1

= −
v , w

w v w
w , w



Solution:

)0,1,1(11 == vw

)2,0,0()0,
2

1
,

2

1
(

2/1

2/1
)0,1,1(

2

1
)2,1,0(

2

22

23
1

11

13
33

=−−−=




−




−= w

ww

wv
w

ww

wv
vw

Example: Applying the Gram-Schmidt process

Apply the Gram-Schmidt process to the following basis for R3 

)}2,1,0(,)0,2,1(,)0,1,1{(

321

=B

vvv

)0,
2

1
,

2

1
()0,1,1(

2

3
)0,2,1(1

11

12
22 −=−=




−= w

ww

wv
vw



}2) 0, (0, 0), , 
2

1
 ,

2

1
( 0), 1, (1,{},,{' 321

−
== wwwB

Orthogonal basis 

}1) 0, (0, 0), , 
2

1
 ,

2

1
( 0), , 

2

1
 ,

2

1
({},,{''

3

3

2

2 −
==

w

w

w

w

w

w

1

1B

Orthonormal basis



◼ Alternative form of the Gram-Schmidt orthonormalization process:

                             is a basis for an inner product space V  },,,{ 21 nB vvv =

1 1
1

1 1

2
2 2 2 2 1 1

2

3
3 3 3 3 1 1 3 2 2

3

1

1

1 2

,  where 

,  where 

 

,  where 

{ , , , } is an orthonormal basis for 

n
n

n n n n i i

in

n V

−

=

= =

= = −

= = − −

= = −





w v
u

w v

w
u w v v , u u

w

w
u w v v , u u v , u u

w

w
u w v v , u u

w

u u u


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