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6.1 Inner Products



Points and Vectors in R"

Definition
A
A point is an element of R", drawn as a point \ .
the point (1, 3)
(a dot).
)

A vector is an element of R”, drawn as an arrow.
When we think of an element of R" as a vector,
we'll usually write it vectically, like a matrix with
one column: the vector (3)

().



So why make the distinction?

A vector need not start at the origin: it can be located anywhere! In other
words, an arrow is determined by its length and its direction, not by its location.

1
These arrows all represent the vector <2> .

However, unless otherwise specified, we'll as-
sume a vector starts at the origin.




Vector Addition and Subtraction Geometrically

5=2+43=3+2

This works in higher dimensions too!
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The parallelogram law for vector addition

Geometrically, the sum of two vectors v, w is ob-
tained as follows: place the tail of w at the head of
v. Then v + w is the vector whose tail is the tail of
v and whose head is the head of w. Doing this both
ways creates a parallelogram. For example,

() ()= ()

Why? The width of v + w is the sum of the widths,
and likewise with the heights.

Vector subtraction

Geometrically, the difference of two vectors v, w is
obtained as follows: place the tail of v and w at the
same point. Then v — w is the vector from the head
of w to the head of v. For example,

(2)-(2)=(3):

Why? If you add v —w to w, you get v.




Scalar multiples of a vector
These have the same direction but a different length.

Some multiples of v. All multiples of v.

<
/* -0
o/

So the scalar multiples of v form a line.



Length and Dot Product in R"

= Length:

The length of a vector v = (v,,v,,-+-,v,) in R" is given by

|v]| =+ +v,2+---+v > (]|v] is areal number)

= Note: The length of a vector 1s also called its norm

= Properties of length (or norm)
D [|v|=0
(2) |v|=1 = v is called a unit vector
(3) HVH =0 ifand onlyif v=0
@) Jlevl=le] IV



Example:
(a) In R°, the length of v=(0,-2,1,4,—2) is given by

V]| =40% +(=2)> + 1> + 4% +(=2)> =/25 =5

(b) In R* the length of v=(7=, 7=, \%) is given by

G SIREIRED R

(If the length of v 1s 1, then v 1s a unit vector)




Example:

A standard unit vector in R": only one component of the vector is 1
and the others are 0 (thus the length of this vector must be 1)

R :{epez»'“aen} :{(1,(),...,0),(0,1,...,0),...,(0,0,...,1)}

Notes: Two nonzero vectors are parallel if wu=cv

(1) ¢>0 = wuand v have the same direction
(2) ¢<0 = wuand v have the opposite directions



Theorem: Length of a scalar multiple
Let v be a vector in R” and ¢ be a scalar. Then
Jevil=[el]v]
Proof:
V=, vy, 0,)
=>cv=_(cv,,CV, ", CV,)

levi[ =1 (ev vy s eeesev,)]]

= (en)” +(ev)’ +-+(ev, )’

= \/cz(vl2 +1/22 + ---+vn2)

2 2 2
:|c|\/v1 +v, ety

=c]llv]]



Theorem: How to find the unit vector in the direction of v

. . V
If v is a nonzero vector in R, then the vector u = W
\%

has length 1 and has the same direction as v. This vector u
is called the unit vector in the direction of v

Proof: |
V iS nonzero :>HVH>O:H>O
\Y
Ifu= H V (u has the same direction as v)
\Y
v ||levii=tellvil
|jul|=|—— = ——]||v||=1 (u has length 1)
[ v]] [ v]]




Notes:

\
(1) The vector ﬂ is called the unit vector in the direction of v
\%

(2) The process of finding the unit vector in the direction of v

is called normalizing the vector v



Example: Finding a unit vector

Find the unit vector in the direction of v = (3, —1, 2), and verify
that this vector has length 1

Solution:
v=03,-1,2)= |v|= 32 +(-1)’ +2* =14
\% 3,-1,2)
— = —
VIl 32+ (=1)? +22 J14

3,-1,2)

:(\/L ’ \/_114 ’ \/?4j

SEORERER S
— 18 a unit vector

||V||




« Distance between two vectors:
The distance between two vectors u and v in R” 1s

du,v)=|u-v]|

F

diu,vl= J(Hl =)+, - vy

Y

= Properties of distance
() d(u,v)=0
(2) d(u,v)=0 ifandonlyifu=v

3) d (ll , V)= d (V , W) (commutative property of the distance function)



Definition: Dot product in R"
The dot product of w=(u; ,u, ,---,u,) andv=_>, ,v, -,V )
returns a scalar quantity
u-v=uv +u,v,+---+u v (u-vis areal number)
(The dot product is defined as the sum of component-by-component

multiplications)

Example: Finding the dot product of two vectors

The dot productofu=(1,2,0,-3)and v=(3, 2,4, 2) is
u-v=[01EG)+2)(-2)+O)D +(-3)2)=-7



Theorem: Properties of the dot product
If u, v, and w are vectors in R" and c is a scalar,
then the following properties are true

(1) U -V =V-U (commutative property of the dot product)
(distributive property of the dot product

over vector addition)

3 . — vV —11 - (associative property of the scalar
) C(ll V) (Cll) v=u (CV) multiplication and the dot product)

2Q)u-(Vv+w)=u-v+u-w

@ v-v=|v|]® =>v-v=0

(5) v-v=0 1fand only 1f v = ( (straightforwardly true according to (4))

> The proofs of the above properties simply follow the definition of the
dot product in R”



Euclidean n-space:

When R" is combined with the standard operations of vector
addition, scalar multiplication, vector length, and dot product,

the resulting vector space 1s called Euclidean n-space



Example: Computations With Dot Products

Compute the following for:

u=2,-2),v=(5,8),w=(-4,3)
@u-v () @-v)w ©Qu-2v) @IWI* (&) u-(v-2w)

Solution:
(@) u-v=2)35)+(=2)(@8)=-6
(b) (w-v)w=-6w=-6(—4,3)=(24,—-18)
(c) u-2v)=2u-v)=2(-6)=-12
(d) wlP=w-w=(=H(4+(3)3)=25
() v-2w=(5—-(-8),8-6)=(13,2)
u-(v—-2w)=2)13)+(-2)(2)=26-4=22



Theorem: The Cauchy-Schwarz inequality
If u and v are vectors in R", then

lu-v|<||ul|||v|| (|u-v|denotes the absolute value of u-v)

Proof: A more general proof will be given later.

Example: Veritying Cauchy-Schwarz inequality
Verify the Cauchy-Schwarz inequality for u = (1, -1, 3)
and v=(2,0,-1).

Solution:
u-v=—1, u-u=11, v-v=5

:u-v‘:‘—l‘:l
|V = vuu vy =I1-4/5 =455

uevi< ]




= Dot product and the angle between two vectors

To find the angle 6 (0 < @ < ) between two nonzero vectors
u = (u,, u,) and v=(v,, v,) in R?, the Law of Cosines can be

applied to the following triangle to obtain

v =ul" = V]| + "~ 2|V cos &

.. 2 2 2
. HV_u =, —v)" +(u, —v,)

2 2 2

2 2 2

Ccos g Vit wev
Vil V]




« The angle between two nonzero vectors in R":

u-v

0 = ,0<0<r
IYinal
O 1te Same
d1§£c?t?on u-v<0 uv=0 u-v>0 direction
E<8<7z (9_% O<¢9<— 0=0
cosf =1 COS(9<O cos@ =0 cosé’>0 cost =1

Note:

The angle between the zero vector and another vector 1s
not defined (since the denominator cannot be zero)



Example: Finding the angle between two vectors
u=(-4,0,2,-2) v=(2,0,-1,1)
Solution:
Ju = vu-u =/(=4F +0% +2° +(-2) =~/24
V| =vvev =22 + (0] +(=17 +1> =6

u-v=(-4)(2)+(0)0)+2)(=)+(=2)1) =12

g WV _ -12 12 _
lullivil V24J6 144
=60 =x .. uand v have opposite directions

(In fact, u =-2v and as discussed, u and v
are parallel and with different directions)



= Orthogonal vectors:

Two vectors u and v in R” are orthogonal (perpendicular) if

u-v=_0

=« Note:

The vector 0 1s said to be orthogonal to every vector



Example: Finding orthogonal vectors

Determine all vectors in R” that are orthogonal to u = (4, 2)

Solution:
u=(4,2) Let v=(v,,v,)
= u-v=4,2)-(v,v,)

=4y, +2v,

=0

—1

2

" VZ(—t,tj, teR
2

— v, = , Vo, =1



Theorem: The Triangle Inequality

If u and v are vectors in R”, then |ju + v||<|u| +|v||
Proof:

lu+v|*=(u+v) (u+v)
=u-(u+v)+v-(u+v)=u-u+2u-v)+v-v
2 2 2 2
=[[u” H2(u- v)+ | v]]" < Jlaf|" +£2 - v+ |[v]]" (c <)
<||ul]* +2|Ju|| || v|| +]|| v|* (Cauchy-Schwarz inequality)

= ([ull+1]IvID

, (The geometric representation of the triangle inequality:
" H u+yv ” = H u H + H M ” for any triangle, the sum of the lengths of any two sides is

larger than the length of the third side (see the next slide))
Note:

Equality occurs in the triangle inequality 1f and only 1f

the vectors u and v have the same direction (in this
situation, cos 0 =1 and thus u-v = ||u|| ||V|| > 0)



Theorem: The Pythagorean theorem
If u and v are vectors in R”, then u and v are orthogonal
if and only 1f

2 (This is because u-v = 0 in the

||u + V||2 :||U||2 + || VH proof for the last Theorem)

% The geometric meaning: for any right triangle, the sum of the squares of the lengths of
two legs equals the square of the length of the hypotenuse.

Y
Y

Ju+ v <|lul[+]v]] lu+vIF =[[ulf +v|



Definition:

Inner Product Space

Let u, v, and w be vectors in a vector space V, and let ¢ be
any scalar. An inner product on V' 1s a function that associates
a real number <u , V> with each pair of vectors u and v and
satisfies the following axioms (abstraction definition from

the properties of dot product)

(1) <ll , V> = <V , ll> (commutative property of the inner product)

(2) <u vV + W> — <ll V> n <ll W> (distributive property of the inner product
’ — R ,

over vector addition)

_ (associative property of the scalar multiplication and the
(3) ¢ <ll ? V> o <Cll ? V> inner product)

4) {v,v)>0

(5) <V , V> = (0 1f and Only if v = () (straightforwardly true according to (4))



Note:

u - v = dot product (Euclidean inner product for R")

<u, v >= general inner product for a vector space V

Note:

A vector space V' with an inner product 1s called an inner product space

Vector space: (V, +, -)

Inner product space: (J, +, -, <, >)



Example: The Euclidean inner product for R”

Show that the dot product in R" satisfies the four axioms of an inner product.

Solution:
u:(ulauza'”aun) 5 V:(V19V29”.9Vn)
W, Vv) =u-v=uy +uy, ++uyv

By a previous Theorem, this dot product satisfies the required four axioms. Thus,
the dot product can be a sort of inner product in R"



Example: A different inner product for R"

Show that the following function defines an inner product
on R?. Givenu=(u, ,u,) and v=(v,, v,),

Cw,v) =uyv, +2u,v,
Solution:
1) $u,v) =uy, +2u,v, =vu, +2v,u, ={v,u)
(2) w=(w,w,)
= {u,v+w) =u,(v, +w)+2u, (v, +w,)
=u, v, +uw, +2u,v, +2u,w,
= (u,v, +2u,v,) + (u,w, + 2u,w,)

=Cu, v) + u,w)



(3) cu,v) =c(uy, +2u,v,)=(cu,)v, +2(cu,)v, = {cu, v)
(4) {v,v)=v>+2v," 20

5) (v,v)=0=v"+21,"=0=v,=v,=0 (v=0)

Note: This example can be generalized such that
<u,v>=cuyv +cu,v,+---+cu v , whereall c. >0

can be an inner product on R"



Example: A function that is not an inner product

Show that the following function is not an inner product on R?
Cw,v) =uyv, —2u,v, +u,v,
Solution:
Let v=(1,2,1)
Then {v,v) =1)1)=22)2)+()(1)=-6<0
Axiom 4 is not satisfied

Thus this function is not an inner product on R’



Example (Inner Product on M,,.,):

Inner Product Definition: For A, B € My, = all 2 X 2 matrices

(A, B) = trace(AB")

Concrete Example: Let A = [;’ i] and B = !(1] [1]] .Compute (A, B):

= 0 = )

(A, B) = trace(AB")=2+3=5



Show that this satisfies all inner product axioms:

1. Symmetry: (A, B) = (B, A)

Additivity: (A + Ay, B) = (A1, B) + (As, B)
Homogeneity: (cA, B) = c(A, B)

Positivity: (A, A) > Oforall A

Definiteness: (A, A) =0 <— A =0

AR R



Axiom 1: Symmetry (4, B) = (B, A)

(A, B) = trace(AB') = trace(B' A) = trace((B* A)') = trace(A’ B) = trace(BA') = (B, A)

(A1 + Ay, B) = trace((A; + Ay)BT) = trace(A, B! + A,B") = trace(A,B") + trace(A4,B")

= (A, B) + (Ay, B)



Axiom 3: Homogeneity (cA, B) = ¢(A, B) for all scalars ¢

(cA, B) = trace((cA)B") = trace(c(AB')) = ¢ - trace(AB') = ¢(A, B)

Axiom 4: Positivity (4,4) >0 forall 4 ¢ M.,

(A, A) = trace(4A")

AAT — {011 a12] [an 621] _ {a%l + ai, * ]

2 2
a1 Q22| |G12 QA2 * a31 T Qa9

trace(AA") = (af; + ajy) + (a3, + a3) Z a;; = 0



Axiom 5: Definiteness (4,4) =0 < 4 =0 (zero matrix)
(A, A) = af; + afy + a5, + a5 =0

Since each term is non-negative, this requires:
a1 =0, a2=0, ay =0, ap=0~0

Therefore A = 0 (the zero matrix)



Example (Inner Product on P,):

Inner Product Definition: For p, g € P, polynomials of degree < 2
(p,a) = p(0)q(0) + p(1)q(1) + p(2)a(2)
Example: [fp(z) = 2* + 1and ¢(x) = 2z + 3, then
(p,q) = p(0)q(0) + p(1)q(1) +p(2)q(2) = (1)(3) +(2)(5) + (5)(7) = 3 4+ 10 + 35 = 48

Exercise: Show that this satisfies all inner product axioms.



Theorem: Properties of inner products

Let u, v, and w be vectors 1n an inner product space V, and
let ¢ be any real number

(D) O, v)=<v,0 =0
2) Cu+v,w) =<u,w) +<{v,w)
3) {u,cv) =c u, v)

% To prove these properties, you can use only the four axioms for
defining an inner product

Proof:

(1) O, v) = <Ou V> O<u V> 0

2)  {u+v, W> <W ll+V> <W w + <w, V> <u w) + {v,w)
(1) (3) (1)
(3) <u,cv>=<cv,u>=c<v,u>=c<u,v>



Definition of length, distance, angle, orthogonal, and normalizing for general inner
product spaces 1s a generalization to those based on the dot product in Euclidean n-space

= Length of u:
[l =/ <u, w

« Distance between u and v:
d(u,v)=[u—v|=y(u-v,u-v)

= Angle between two nonzero vectors u and v:
u,v
RO

- ’
lalf{]v]

0<f0<rx

« Orthogonal(u L v)
u and v are orthogonal if {u,v) =0



= Normalizing vectors

(1) If ||v| =1, then v is called a unit vector

(Note that ||| is defined as /(v,v) )

2) v#0 Normalizing . Y (the unit vector in the
HVH direction of v)

(if visnot a
zero vector)



Example: An mner product in the polynomial space
Forp=a,+ax+---+a x"andqg=>b, +bx+---+b x",

and (p,q)=a,b, +ab, +---+a,b, is an inner product

Let p(x) =1-2x%, g(x) =4—2x+x" be polynomials in P,
@) (p,q)=? ) llql=? () d(p,q)=?

Solution:

(@) (p,q)=D@)+(0)-2)+(=2)(1) =2
() llgll=(q,q) =4 +(=2)* +1* =21

(c) " p—qg=-3+2x-3x"

~d(p,q)=llp-qll=y{r-9,p—q)
= J(=3)> +22 +(=3)* =22




= Properties of norm: (the same as the properties for the dot

product in R")
(1) fufz0
(2) ||jul|=0 ifand only if u=0
) [lcul[=[c||u]

= Properties of distance: (the same as the properties for the dot
product in R")

(1) du,v)=0
(2) d(u,v)=0 ifandonlyif u=v
(3) d(u,v)=d(v,u)



Theorem:

Let u and v be vectors in an inner product space V'

(1) Cauchy-Schwarz inequality:
[<u, v [<[[ul[]|v]

(2) Triangle inequality:
lu+ v <[[u]| +]]v]

(3) Pythagorean theorem:

u and v are orthogonal if and only if |u + v||*=|u|* +| v|*

(4) Parallelogram Identity:

-+ VI + [ = v = 2 ju” +2 V][



Proof: Cauchy-Schwarz inequality

[<u, v) [<[[ul[[]v]
Let Q(t) be the polynomial
Qt) = [lu+tv|* = [[u]|* + 2t {u, v) + t2[|v]]*.

Since Q(t) > 0 for all t € R, then the discriminant of Q(t) is non

positive. Then
211,112
(u, v)? < lull®lIv]®.

If |(u,v)| = |lu|l||v]|, this mean that the discriminant of Q(t) is
zero. Then the equation Q(t) = 0 has a solution. This means that
the vectors u, v are linearly dependent.



Proof of Pythagorean Theorem

Given: u, v € V with (fu, ’U> = (). To prove: ||u -+ 'UH2 H’U,H2 + ||'UH2

lu +v]|* = (u+v,u+v) = (u,u +v) + (v,u+v) = (u,u) + (u,v) + (v,u) + (v,v)

= (u,u) + 0+ 0+ (v,0) = (u,u) + (v,v) = ||ul|* + ||v|*



Proof of Parallelogram Identity: [ju + v||° +|ju—v|[*=2 |jul|* +2 |||’

lu +v|]* + [Jlu|]? = (u+v,u+v) + (u —v,u — V)

= (u,u) + (u,v) + (v,u) + (v,v) + (u,u) + (u, —v) + (—v,u) + (—v, —v)
= 2(u,u) + 2(v,v) + (u,v) + (v,u) — (u,v) — (v, u)

= 2|[ul]* + 2| |v||



Orthonormal Bases: Gram-Schmidt Process

= Orthogonal set:
A set S of vectors in an inner product space V' is called an
orthogonal set 1f every pair of vectors 1n the set 1s orthogonal
S={vivorv, feV
(v, v,;)=0,fori=j

« Orthonormal set:

An orthogonal set 1n which each vector 1s a unit vector 1s
called orthonormal set

S:{Vl,vz,---,vn} cV

Fori=j, <Vl-,Vj>:<V,'9Vi>:
Fori# j, (v;,v,)=0

2

=1

\f



Note:

- If S 1s also a basis, then it 1s called an orthogonal basis or
an orthonormal basis

~ The standard basis for R" is orthonormal. For example,
S =1{(1,0,0),(0,1,0),(0,0,1)}

1s an orthonormal basis for R?

= This section identifies some advantages of orthonormal bases,
and develops a procedure for constructing such bases, known
as Gram-Schmidt orthonormalization process



Example: A nonstandard orthonormal basis for R’
Show that the following set 1s an orthonormal basis
A AP
o (L L) (N2 V2 22 (g_glj
\/5 9 \/5 5 b 6 5 6 5 3 5 3 b 3 5 3

Solution:

First, note that the three vectors are mutually orthogonal

— 1 1 —
Vl ’V2 ——g‘i‘g‘l‘O—O

V, "V, = 2 — 2 +0=0
32 32

2 V2 22
V, V,=——————+ =0

9 9 9



Second, note that each vector 1s of length 1
vV, [=yV, Vv, =\/%+%+O =1
Voll=4Vy v, =5+ +5 =1

Thus, S 1s an orthonormal set

Because these three vectors are linearly independent (you can
check by solving c,v, + ¢,v, + ¢;v; = 0) in R’ (of dimension 3), by
Theorem (given a vector space with dimension », then n linearly
independent vectors can form a basis for this vector space), these

three linearly independent vectors form a basis for R>.

= S is a (nonstandard) orthonormal basis for R’



Example: An orthonormal basis for P,(x)
In P,(x), with the inner product {p,q) = a,b, + a,b, + a,b,,
the standard basis B = {1, x, x°} is orthonormal
Solution:

v, =1+0x+0x>, v,=0+x+0x>, v,=0+0x+x7,

Then

Vi, vy) = 1)(0)+(0)1)+(0)(0) =0

(v, v3) = (1)(0) +(0)(0) + (0)(1) =0

(V5,v3)=(0)(0) +(1)(0)+(0)D) =0
=T =D+ (0)+(0)(0) =1
Voll= (V2 vo) = \/(O)(O)+(1)(1)+(O)(O) =1
vl = v =)0 O)(0)+ (1) - 1




Theorem: Orthogonal sets are linearly independent

If S={v,,v,,---, v } 1s an orthogonal set of nonzero vectors in
an inner product space V, then S 1s linearly independent

Proof:

S 1s an orthogonal set of nonzero vectors,

1.e.,(V,,v;»)=0fori# j, and (v,,v,) >0

(If there 1s only the trivial solution for ¢;’s,

For ¢v, +¢,v, ++--+c,v, =0 i.e.,all ¢;’s are 0, S is linearly independent)

= {(qVv,+c,V,+-+c v ,v)=(0,v)=0 Vi
= c{v,V)+c,(V,, V)t +cv,Vv)++c(V ,V,)

=C, <Vl. , Vl.> = () (because S is an orthogonal set of nonzero vectors)

w(v,v)#0 =c¢ =0 Vi ..§i1slinearly independent



Corollary:
If V' 1s an mner product space with dimension n, then any
orthogonal set of n nonzero vectors 1s a basis for V.

Proof:

1. By a Theorem , 1f S = {v, v,, ..., v} 1s an orthogonal set nonzero vectors,
then § is linearly independent.

2. According to a previous Theorem, 1if § = {v, v,, ..., v, } 1s a linearly
independent set of n vectors in V' (with dimension #), then S 1s a basis for V.

% Based on the above two arguments, it is straightforward to derive the
above corollary.



Example: Using orthogonality to test for a basis
Show that the following set is a basis for R*
Vv, Vv, Vv, v,
S=((2,3,2,-2),(1,0,0,1),(=1,0,2,1),(=1,2,-1,1)}
Solution:
V,,V,,V;,V, :N0ONZEro vectors
vV, v, =240+0-2=0 V, vV, ==1+0+0+1=0
V-V, =—2+0+4-2=0 v,-v,=-1+0+0+1=0
V, v, =—246-2-2=0 v,-v,=14+0-2+1=0
= S 1s orthogonal
= S'isa basis for R* (by Corollary)

¢ This shows an advantage of introducing the concept of orthogonal vectors, 1.e.,
1t 1s not necessary to solve linear systems to test whether S 1s a basis 1f S 1s a set
of orthogonal vectors.



Theorem: Coordinates relative to an orthonormal basis
If B={v,,v,,:--, v, } 1san orthonormal basis for an inner
product space V, then the unique coordinate representation of a

vector w with respect to B 1s

W=(W, V)V, +(W, V)V, + - +(W,V )V

% The above theorem tells us that it 1s easy to derive the coordinate
representation of a vector relative to an orthonormal basis, which 1s
another advantage of using orthonormal bases

Proof:
B={v,,v,,---, v } 1s an orthonormal basis for V

w=kv, +k,v,+---+k v €V (unique representation from Thm. 4.9)

=]
. J_,then

Since (v, v;) =
e



<W, Vl.>=<(le1 +h,V,+ kv ), Vl.>
:kl <V1’Vi>+.”+ki<vi’Vi>+“.+kn <Vn’Vi>
=k, fori=1ton

= W=(W, V)V, +(W,V )V, +---+(W,V )V

Note:

If B={v,v,,---,v } 1s an orthonormal basis for }"and w e/,

Then the corresponding coordinate matrix of w relative to B 1s
(W, V) |

[W]B _ <W>.V2>

(W, V)



Example: Coordinates relative to an orthonormal basis
For w = (5, -5, 2), find its coordinates relative to the standard basis for R’

(W,v)=w-v,=(5,-5,2)-(1,0,0)=5
(W,v,)=w-v,=(5-5,2)-(0,1,0)=-5
(W,vy)=w-v,=(5,-5,2)-(0,0,1)=2

= [w], =| -5

¢ In fact, it 1s not necessary to use Thm. to find the coordinates relative to the
standard basis, because we know that the coordinates of a vector relative to
the standard basis are the same as the components of that vector.

> The advantage of the orthonormal basis emerges when we try to find the
coordinate matrix of a vector relative to a nonstandard orthonormal basis
(see the next slide).



Example: Representing vectors relative to an orthonormal basis

Find the coordinates of w = (5, -5, 2) relative to the following

orthonormal basis for R’

B={(,5,0).,(-5,5,0),(0,0,D}
Solution:
(w,vp)y=w-v,=(5,-5,2)-(2,%,0)=-1
(W,v,)=w-v,=(5-5,2)-(—-%,2,0)=-7

(W,vy)=w-v,=(5,-5,2)-(0,0,1)=2

—1
= [w], =|—-7
2




Gram-Schmidt orthonormalization process:

B={v,,v,,---,v } 1sabasis for an inner product space V

Let w, =v,

W, =V —<V2’W1>W
2 2 <W1,W1> I
W3_V3_<V3 9W1>W1_<V3 9W2>W2
<W1 9W1> <W2 9W2>
n—1 <V ,W>
W =V —Z W,
n n — <Wl-,Wl> i

= B'={w, , W, , -, W, } is an orthogonal basis
Wl W2 Wn

b

} 1s an orthonormal basis

b b

W

n




Example: Applying the Gram-Schmidt process

Apply the Gram-Schmidt process to the following basis for R>

Vl
B= {(1,1,0),
Solution:

w,=v,=(1,1,0)

v, 'Wl

\L V3
1,2,0), (0,1,2)}

1

W2:V2_ (1 2 O)——(I,I,O) (__ ~ O)
W1°W1 2 2
W, =V _V3'W1W1_V3'W2 w,
W, W, W, W,
~(0.1,2) = (1,10~ 2 (2, 2.0)=(0,0,2

1/2° 272



Orthogonal basis

-1 1
= B'={w,,w, ,w,} ={(1,1,0), (7,5,0), (0,0,2)}

Orthonormal basis

W, W, W, 1 1 -1 1

:>B”:{ W3H}:{(\/§9\/§90)9(\/§9\/590)9(09091)}

b 5

[will v



= Alternative form of the Gram-Schmidt orthonormalization process:

B={v,v,,---,v_} 1sa basis for an inner product space V

=" _WY
il I

W,

u, , wherew, =v, —(v,,u,)u,
[w,

u, W5 where w, =V, —(v,u)u —(v,,u,)u,
[w
W n—1

u =—=-r, wherew, =v,_ —Z(Vn ,u, )y,
|Wn i=1

= {u,,u,, -+, u_} 1s an orthonormal basis for V
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