
OBJECTS AND REFERENCES

Ch5.3

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 1

Objects and References: Outline

• Variables of a Class Type

• Defining an equals Method for a Class

• Boolean-Valued Methods

• Parameters of a Class Type

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 2

Variables of a Class Type

• All variables are implemented as a memory

location

• Data of primitive type stored in the memory

location assigned to the variable

• Variable of class type contains memory address

of object named by the variable

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 3

Variables of a Class Type

• Object itself not stored in the variable

• Stored elsewhere in memory

• Variable contains address of where it is stored

• Address called the reference to the variable

• A reference type variable holds references

(memory addresses)

• This makes memory management of class types more

efficient

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 4

Variables of a Class Type

• Figure

5.5a

Behavior

of class

variables

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 5

Variables of a Class Type

• Figure

5.5b

Behavior

of class

variables

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 6

Variables of a Class Type

• Figure

5.5c

Behavior

of class

variables

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 7

Variables of a Class Type

• Figure

5.5d

Behavior

of class

variables

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 8

Variables of a Class Type

• Figure

5.6a

Dangers of

using ==

with objects

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 9

Variables of a Class Type

• Figure

5.6b

Dangers of

using ==

with objects

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 10

Defining an equals Method

• As demonstrated by previous figures

• We cannot use == to compare two objects

• We must write a method for a given class which will

make the comparison as needed

• The equals for this class method used same

way as equals method for String

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 11

Demonstrating an equals Method

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 12

public class Rectangle {
private int width;
private int height;

public void setWidth(int w){ width = w; }
public void setHeight(int h){ height = h; }

public int getWidth() { return width; }
public int getHeight() { return height; }

public boolean equals(Rectangle r){
return r.width == this.width &&

r.height == this.height;
}

}

public class RectangleTest {
public static void main(String[] args) {
Rectangle box1 = new Rectangle();
Rectangle box2 = new Rectangle();
box1.setWidth(5); box1.setHeight(10);
box2.setWidth(5); box2.setHeight(10);
if(box1 == box2)

System.out.println("Match with ==.");
else

System.out.println("Do not match with ==.");

if(box1.equals(box2))
System.out.println("Match with the method equals.");

else
System.out.println("Do not match with the method equals");

}
}

Demonstrating an equals Method

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 13

Note difference in the two
comparison methods ==

versus .equals()

Do not match with ==.
Match with the method equals.

Sample screen output

Object1 = object2

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 14

public class RectangleTest {
public static void main(String[] args) {
Rectangle box1 = new Rectangle();
Rectangle box2 = new Rectangle();
box1.setWidth(5); box1.setHeight(10);
box2.setWidth(20); box2.setHeight(30);

box1 = box2;
System.out.println("The width of box 1 is " + box1.getWidth());
System.out.println("The hight of box 1 is " + box1.getHeight());
}

}

The width of box 1 is 20
The height of box 1 is 30

Sample screen output

Boolean-Valued Methods

• Methods can return a value of type boolean

• Use a boolean value in the return statement.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 15

public boolean isPositive(int n) {
return n > 0;

}

Parameters of a Class Type

• When assignment operator used with objects of

class type

• Only memory address is copied

• Similar to use of parameter of class type

• Memory address of actual parameter passed to formal

parameter

• Formal parameter may access public elements of the

class

• Actual parameter thus can be changed by class

methods

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 16

Parameters of Primitive type vs. class

type
• Parameter of primitive type initialized with value

of actual parameter

• Value of actual parameter not altered by method

• Parameter of class type initialized with address of

actual parameter object

• Value of actual parameter may be altered by

method calls

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 17

Parameter of primitive type vs. parameter

of class Type (Example)

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 18

public class ParameterDemo {
private int x;
private int y;
public void setValues(int x, int y){

this.x = x;
this.y = y;

}
public void tryToChange(int var1){

var1 = x;}
public void tryToReplace(ParameterDemo otherObject){

otherObject = this;
}
public void change(ParameterDemo otherObject){

otherObject.x = this.x;
otherObject.y = this.y;

}
public void display(){

System.out.println("x = "+ x + ", y = "+ y);} }

public class ParametersDemoTest {
public static void main(String[] args) {

ParameterDemo p1 = new ParameterDemo();
ParameterDemo p2 = new ParameterDemo();
p1.setValues(2, 3);
p2.setValues(7, 9);

int number = 20;
System.out.println("number before calling tryToChange is " + number);
p1.tryToChange(number);
System.out.println("number after calling tryToChange is " + number);

System.out.println("p2 before calling tryToReplace is ");
p2.display();
p1.tryToReplace(p2);
System.out.println("p2 after calling tryToReplace is ");
p2.display();

p1.change(p2);
System.out.println("p2 after calling change is ");
p2.display();}}

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 19

Parameter of primitive type vs. parameter

of class Type (Example)

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 20

Parameter of primitive type vs. parameter

of class Type (Example)

number before calling tryToChange is 20
number after calling tryToChange is 20
p2 before calling tryToReplace is
x = 7, y = 9
p2 after calling tryToReplace is
x = 7, y = 9
p2 after calling change is
x = 2, y = 3

Sample screen output

Summary

• Classes have

• Instance variables to store data

• Method definitions to perform actions

• Instance variables should be private

• Class needs accessor, mutator methods

• Methods may be

• Value returning methods

• Void methods that do not return a value

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 21

Summary

• Keyword this used within method definition

represents invoking object

• Local variables defined within method definition

• Formal arguments must match actual parameters

with respect to number, order, and data type

• Formal parameters act like local variables

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 22

Summary

• Parameter of primitive type initialized with value

of actual parameter

• Value of actual parameter not altered by method

• Parameter of class type initialized with address of

actual parameter object

• Value of actual parameter may be altered by method

calls

• A method definition can include call to another

method in same or different class

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 23

