AN INTRODUCTION TO

PROBLEM SOLVING
AND PROGRAMMING

WALTER SAVITCH

INFORMATION HIDING AND
ENCAPSULATION

Ch5.2

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Information Hiding, Encapsulation: Outline

- Information Hiding

- The public and private Modifiers
- Methods Calling Methods

- Encapsulation

- UML Class Diagrams

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Information Hiding

- Programmer using a class method need not know
details of the implementation of the method

- Only needs to know what the method does

- Information hiding:

- Designing a method so it can be used without knowing

details
- Also referred to as abstraction

[

\

Careful documentation of what a

method does can achieve that.

For more info read: pre/post conditions

J

- Method design should separate what from how

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

The public and private Modifiers

- When an identifier is specified as public:

- Any other class can directly access that identifier by
name

- When an identifier is specified as private:

- Only the class itself can directly access that identifier by
name

- It can not be accessed directly from the outside

- Classes are generally specified as public
- Instance variables are usually private

CSC111

Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Programming Example

public class Rectangle

{

public int width;
public 1int height;
private int area;

public void setDimensions
(int newWidth,
int newHeight)

{ width = newWidth;
height = newHeight;
area = width * height;

}

public int getArea ()
{ return area;

}

- Could be used like this In main:

Rectangle box = new Rectangle() ;
box.setDimensions (10,5) ;
System.out.println (box.getArea()) ;

- A statement such as
box.width = 6;
Is legal since width is public

Is it a good idea?
Why?

No, it causes an inconsistency.
Area would still be 50.

CSC111

Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Programming Example

public class Rectangle

{

private int width;
private int height;
private int area;

public void setDimensions
(int newWidth,
int newHeight)

{ width = newWidth;
height = newHeight;
area = width * height;

}

public int getArea ()
{ return area;

}

- Could be used like this In main:

Rectangle box = new Rectangle() ;
box.setDimensions (10,5) ;
System.out.println (box.getArea()) ;

- A statement such as
box.width = 6;
IS illegal since width is private

Is it a good idea?
Why?

[Can we improve it more?

of the class consistent

Yes, keeps remaining elements

CSC111

Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Programming Example

public class Rectangle2

{

private int width;
private int height;
 rate ind .

public void setDimensions
(int newWidth,
int newHeight)
{ width = newWidth;
height = newHeight;
= width * height:
}

public int getArea ()
{ return width * height;

}

- Could be used like this In main:

Rectangle box = new Rectangle() ;
box.setDimensions (10,5) ;
System.out.println (box.getArea()) ;

- A statement such as
box.width = 6;
IS illegal since width is private

- And now we are NOT storing area
but computing it when needed.

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Accessor and Mutator Methods

- When instance variables are private must provide
methods to access values stored there

- Typically named get SomeValue
- Referred to as an accessor method

- Must also provide methods to change the values
of the private instance variable

- Typically named set SomeValue
- Referred to as a mutator method

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Accessor and Mutator Methods

public class Rectangle
private int width;
private int height;

public void setWidth(int w)
{ width = w; }

public void setHeight(int h)
{ height = h; }

public int getWidth()

{ return width; }

public int getHeight()

{ return height; }

public int getArea()

{ return width * height;}

public class RectangleTest {

public static void main (String[] args) {
Rectangle boxl = new Rectangle();
box1.setWidth(5);

box1.setHeight(10);
System.out.println("The dimensions of”’+
“box1 are ("+ boxl.getWidth() + “,”+
box1.getHeight() + “)”);
System.out.println("The area of boxl is ”
+ boxl.getArea());

}
}

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Methods Calling Methods

- A method body may call any other method

- If the invoked method is within the same class

Need not use prefix of receiving object
public void methodl (int x, int y)
{ int sum = method2(x,y);

X++; Y++;

method3(sum); }

public int method2(int i, int j)
{ i++; return i + j;

}

public void method3(int s)
{System.out.println(s);
System.out.println("Done!");}

What will be printed when method1(2,3) is called? 6
Done!

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Activity

- Supermarkets often give prices for a group of items such as 5 for $1.25 or 3 for
$1.00, instead of the price for one item. They hope that if they price apples at 5 for
1.25S you will buy 5 apples instead of 2. But 5 for $1.25 is really 0.25 each, and if
you buy 2 apples, they charge you only $0.5.

- Let's define a class named Purchase to manage the
purchase of multiple identical items. What instance
variables would be needed?

The instance variables are as follows:

private String name;
private int groupCount; //Part of a price, like the 2
// in 2 for $1.99.
private double groupPrice;//Part of a price, like the $1.99
//in 2 for $1.99.
private int numberBought;//Number of items bought.

CSC111

Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Activity(cont)

- what about the methods ?

1.

a ~ 0D

Accessor and mutator methods
Compute the total cost
Compute a single unit cost
Read information

Print information

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

import java.util.Scanner;

iy) g public void setNumberBought(int number)

Class for the purchase of one kind of item, such as 3 oranges. {

Prices are set supermarket style, such as 5 for $1.25. if (number <= 0)

*/

public class Purchase { "

System.out.printin("Error: Bad parameter in " +

i private String name; . e
private int groupCount; //Part of a price, like the 2 in System.exit(0);
//2 for $1.99. }]
ivate doub] Price; //Part of ice, like the $1.99 S
private double groupPrice ;; .:; zofo:; ;;rl"lc;; ike the § aiimbierBought = pubers
private int numberBought; //Number of items bought. }
public void setName(String newName)
{
name = newName;
}
/*t

Sets price to count pieces for $costForCount.
For example, 2 for $1.99.

*
/4
public void setPrice(int count, double costForCount)
{
if ((count <= 0) || (costForCount <= 0))
{
System.out.printin("Error: Bad parameter in " +
"setPrice.");
System.exit(0);
}
else
{
groupCount = count;
groupPrice = costForCount;
}

20anner Keyooara = new scanneriLoystem.in)

System.out.

printiIn("Enter name of item you are purchasing:");

name = keyboard.nextLine();

System.out.
System.out.
System.out.
System.out.

printin("Enter price of item as two numbers.");
printin("For example, 3 for $2.99 is entered as");
printin("3 2.99");

printiIn("Enter price of item as two numbers, " +

groupCount
groupPrice

"now:");

keyboard.nextInt();
keyboard.nextDouble();

while ((groupCount <= 0) || (groupPrice <= 0))
{ //Try again:

}

System.out.
System.out.
System.out

System.out
System.out.

groupCount
groupPrice

printin("Both numbers must " +

"be positive. Try again.");
printin("Enter price of " +

"item as two numbers.");

.printin("For example, 3 for " +

"$2.99 is entered as");

printin("3 2.99");

printin(

"Enter price of item as two numbers, now:");
keyboard.nextInt(Q;
keyboard.nextDouble();

System.out.printin("Enter number of items purchased:");
numberBought =

keyboard.nextInt();

while (numberBought <= 0)
{ //Try again:

System.out.

System.out.

numberBought =

printin("Number must be positive. " +

"Try again.");
printin("Enter number of items purchased:");
keyboard.nextInt();

hmming"”, 8th Ed.

umber being purchased.

wt()

In(numberBought + + name);
In("at " + groupCount +
" for §" + groupPrice);

20

11Cost ()

ce / groupCount) * numberBought;
tCost()

2 / groupCount;

3ought()

jht;

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

public class PurchaseDemo

{
public static void main(String[] args)
{

Purchase oneSale = new Purchase();
oneSale.readInput();

oneSale.writeOutput();

System.out.printin("Cost each $" + oneSale.getUnitCost());

System.out.printin("Total cost $" +
oneSale.getTotalCost());

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

UML Class Diagrams

Purchase

- Note
Figure 5.4
for the

ame: String
roupCount: int
rou tca: _double

umberBought: int

Purchase

class

Plus signs imply
public access

+ 4+ + + + + 4+ +

Minus signs imply
private access

etName(String newName): void

etPrice(int count, double

costForCount): void

etNumberBought(int number): void

eadInput(): void
riteQutput(): void
etName(): String
etTotalCost(): double
etUnitCost(): double
etNumberBought(): 1nt

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

More code samples

- listing 5.11
- listing 5.12
- listing 5.13
- listing 5.14
- listing 5.15

