
INFORMATION HIDING AND

ENCAPSULATION

Ch 5.2

Information Hiding, Encapsulation: Outline

• Information Hiding

• The public and private Modifiers

• Methods Calling Methods

• Encapsulation

• UML Class Diagrams

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 2

Information Hiding

• Programmer using a class method need not know

details of the implementation of the method

• Only needs to know what the method does

• Information hiding:

• Designing a method so it can be used without knowing

details

• Also referred to as abstraction

• Method design should separate what from how

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 3

Careful documentation of what a

method does can achieve that.
For more info read: pre/post conditions

The public and private Modifiers

• When an identifier is specified as public:

• Any other class can directly access that identifier by

name

• When an identifier is specified as private:

• Only the class itself can directly access that identifier by

name

• It can not be accessed directly from the outside

• Classes are generally specified as public

• Instance variables are usually private

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 4

Programming Example

public class Rectangle

{

public int width;

public int height;

private int area;

public void setDimensions

(int newWidth,

int newHeight)

{ width = newWidth;

height = newHeight;

area = width * height;

}

public int getArea ()

{ return area;

}

}

• Could be used like this in main:
Rectangle box = new Rectangle();

box.setDimensions(10,5);

System.out.println(box.getArea());

• A statement such as

box.width = 6;

is legal since width is public

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 5

Is it a good idea?

Why?

No, it causes an inconsistency.

Area would still be 50.

Programming Example

public class Rectangle

{

private int width;

private int height;

private int area;

public void setDimensions

(int newWidth,

int newHeight)

{ width = newWidth;

height = newHeight;

area = width * height;

}

public int getArea ()

{ return area;

}

}

• Could be used like this in main:
Rectangle box = new Rectangle();

box.setDimensions(10,5);

System.out.println(box.getArea());

• A statement such as

box.width = 6;

is illegal since width is private

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 6

Is it a good idea?

Why?

Yes, keeps remaining elements

of the class consistentCan we improve it more?

Programming Example

public class Rectangle2

{

private int width;

private int height;

private int area;

public void setDimensions

(int newWidth,

int newHeight)

{ width = newWidth;

height = newHeight;

area = width * height;

}

public int getArea ()

{ return width * height;

}

}

• Could be used like this in main:
Rectangle box = new Rectangle();

box.setDimensions(10,5);

System.out.println(box.getArea());

• A statement such as

box.width = 6;

is illegal since width is private

• And now we are NOT storing area

but computing it when needed.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 7

Accessor and Mutator Methods

• When instance variables are private must provide

methods to access values stored there

• Typically named getSomeValue

• Referred to as an accessor method

• Must also provide methods to change the values

of the private instance variable

• Typically named setSomeValue

• Referred to as a mutator method

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 8

Accessor and Mutator Methods
public class Rectangle
private int width;
private int height;

public void setWidth(int w)

{ width = w; }

public void setHeight(int h)

{ height = h; }

public int getWidth()

{ return width; }

public int getHeight()

{ return height; }

public int getArea()

{ return width * height;}

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 9

public class RectangleTest {
public static void main (String[] args) {
Rectangle box1 = new Rectangle();
box1.setWidth(5);
box1.setHeight(10);
System.out.println("The dimensions of”+
“box1 are ("+ box1.getWidth() + “,”+
box1.getHeight() + “)”);
System.out.println("The area of box1 is ”
+ box1.getArea());
}

}

Methods Calling Methods

• A method body may call any other method

• If the invoked method is within the same class
Need not use prefix of receiving object

public void method1 (int x, int y)

{ int sum = method2(x,y);
x++; y++;
method3(sum); }

public int method2(int i, int j)

{ i++; return i + j;

}

public void method3(int s)

{System.out.println(s);

System.out.println("Done!");}

What will be printed when method1(2,3) is called?

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 10

6
Done!

Activity

• Supermarkets often give prices for a group of items such as 5 for $1.25 or 3 for
$1.00, instead of the price for one item. They hope that if they price apples at 5 for
1.25$ you will buy 5 apples instead of 2. But 5 for $1.25 is really 0.25 each, and if
you buy 2 apples, they charge you only $0.5.

• Let's define a class named Purchase to manage the

purchase of multiple identical items. What instance

variables would be needed?

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 11

Activity(cont)

• what about the methods ?

1. Accessor and mutator methods

2. Compute the total cost

3. Compute a single unit cost

4. Read information

5. Print information

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 12

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 13

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 14

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 15

UML Class Diagrams

• Note

Figure 5.4

for the

Purchase

class

Plus signs imply

public access

Minus signs imply

private access

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 16

More code samples

• listing 5.11

• listing 5.12

• listing 5.13

• listing 5.14

• listing 5.15

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 17

