
CLASS AND METHOD

DEFINITIONS

Ch 5.1

Class and Method Definitions: Outline

• Class Files and Separate Compilation

• Instance Variables

• Methods

• The Keyword this

• Local Variables

• Blocks

• Parameters of a Primitive Type

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 2

Class and Method Definitions

• Java program consists of objects

• Objects of class types

• Objects that interact with one another

• Program objects can represent

• Objects in real world

• Abstractions

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 3

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 4

A class is a

blueprint …

… for objects that we

instantiate from it

Class and Method Definitions

• Figure 5.2 A class outline as a UML class

diagram

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 5

Methods

• Think of a method as defining an action to be

taken (a segment of code)

• To start the action you invoke or call the method

• There are two kinds of Java methods

• Return a single item

• Return nothing – a void method

• The method main is a void method

• Invoked by the system

• Not by the application program

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 7

Methods

• To call a void method
• Write the invocation followed by a semicolon

• Resulting statement performs the action defined by the
method

• To call a method that returns a quantity
• Write the invocation anywhere a value matching the

return type can be used

• The call performs the action and the returned value will
be used in the place of the invocation

• If you call a method that returns a value the same
way you call a void method, the method will be
executed, but the returned value will be lost.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 8

Why use User-defined methods?

Using methods has several advantages:

• While working on one method, you can focus on just
that part of the program/class and construct it, debug
it, and perfect it.

• Different people can work on different methods
simultaneously.

• If a method is needed in more than one place in a
class, or in different programs, you can write it once
and use it many times.

• Using methods greatly enhances the program’s
readability because it reduces the complexity of the
program.

9

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 10

public class Dog

{ public String name;

public String breed;

public int age;

public void writeOutput()

{ System.out.println("Name: " + name);

System.out.println("Breed: " + breed);

System.out.println("Age in calendar years: " + age);

System.out.println("Age in human years: " +

getAgeInHumanYears());

System.out.println();

} // end writeOutput

public int getAgeInHumanYears()

{ int humanYears = 0;

if (age <= 2)

humanYears = age * 11;

else

humanYears = 22 + ((age-2) * 5);

return humanYears;

} // end getAgeInHumanYears

}

3 Instance variables

or Data members

or attributes

Will have different

values for each Dog

instance created.

Each object will have

its own copy

2 behaviors

or methods

Will be the same for all

Dog instances created,

but act on individual

instance variables.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 11

public class DogDemo

{

public static void main(String[] args)

{

Dog balto = new Dog();

balto.name = "Balto";

balto.age = 8;

balto.breed = "Siberian Husky";

balto.writeOutput();

Dog scooby = new Dog();

scooby.name = "Scooby";

scooby.age = 42;

scooby.breed = "Great Dane";

System.out.println(scooby.name + " is a " + scooby.breed + ".");

System.out.print("He is " + scooby.age + " years old, or ");

int humanYears = scooby.getAgeInHumanYears();

System.out.println(humanYears + " in human years.");

}

}

Dog Example
public class Dog

{ public String name;

public String breed;

public int age;

public void writeOutput()

{ System.out.println("Name: " + name);

System.out.println("Breed: "+breed);

System.out.println("Age..: "+ age);

System.out.println(

"Age in human years: " +

getAgeInHumanYears());

System.out.println();

} // end writeOutput

public int getAgeInHumanYears()

{ int humanYears = 0;

if (age <= 2)

humanYears = age * 11;

else

humanYears = 22 + ((age-2) * 5)

return humanYears;

} // end getAgeInHumanYears

}

public class DogDemo {

public static void main(String[] args)

{

Dog balto = new Dog();

balto.name = "Balto";

balto.age = 8;

balto.breed = "Siberian Husky

balto.writeOutput();

Dog scooby = new Dog();

scooby.name = "Scooby";

scooby.age = 42;

scooby.breed = "Great Dane";

System.out.println(scooby.name +

" is a "+ scooby.breed +".");

System.out.print("He is " +

scooby.age + " years old, or ");

int humanYears =

scooby.getAgeInHumanYears();

System.out.println(humanYears +

" in human years.");

} // end main

}

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 12

Using a Class and Its Methods

• View sample program, listing 5.2
class DogDemo

Sample

screen

output

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 13

../CodeSamples2.htm#Listing 5.2

Defining Methods

• Consider method writeOutput from

class dog

• Method definitions appear inside class definitions

• Methods can only be used with objects of that
class

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 14

Defining Methods

• Most method definitions we will see as public

• A method that does not return a value is specified
as a void method

• A method that does return a values must specify

the type of the returned value.

• Heading includes possible parameters

• Body enclosed in braces { }

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 15

Methods That Return a Value

• Consider method getAgeInHumanYears()

public int getAgeInHumanYears()

{ int humanYears = 0;

if (age <= 2)

humanYears = age * 11;

else

humanYears = 22 + ((age-2) * 5);

return humanYears;

} // end getAgeInHumanYears

• Heading declares type of value to be returned

• Last statement executed is return

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 16

The return statement

17

➢ Make sure of the following in the value-returning methods:

o A value is returned.

o Only a single value is returned to the caller method

o The returned value has the same data type as the method

o is the last to execute in the method

o make sure all paths are considered

➢ Remember that the return statement:

Covering all paths

• Assume you want a method hasLetter for the class Dog, that checks
if a given letter is contained in the name of the dog and returns its
index, otherwise it prints an error message:

public int hasLetter (char letter){

int x = name.indexOf(letter);

if (x != -1)

return x;

else

System.out.print(“Doesn’t contain this letter”);

System.out.println();

return -99;

}

18

What is wrong with

this method?

The return is only in one

path of all possible paths

of execution.

How can we fix that?

There are multiple possibilities, and easy

one is to add a return at the end

return is last to execute

• Assume you want a method hasLetter for the class Dog, that checks
if a given letter is contained in the name of the dog and returns its
index, otherwise it prints an error message:

public int hasLetter (char letter){

int x = name.indexOf(letter);

if (x != -1)

return x;

else

System.out.print(“Doesn’t contain this letter”);

return -99;

System.out.println();

}

19

What is wrong with

this method now?

You can NOT have statements
AFTER the return.

return in void Methods

• You can use return in void methods

• The syntax is simply:

return;

• No value is returned, but the control of the

program is transferred back to the caller method.

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 20

Second Example – Account Class

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 21

public class Account {

public String id, name;

public double balance;

public void readInput(){

Scanner keyboard = new Scanner(System.in);

System.out.println("Enter the account number: ");

id = keyboard.nextLine();

System.out.println("Enter the account holder name: ");

name = keyboard.nextLine();

System.out.println("Enter the account balance in riyals: ");

balance = keyboard.nextDouble();}

public void display(){

System.out.println("\tAccount information");

System.out.println("ID: " + id);

System.out.println("Name: " + name);

System.out.println("Balance: " + balance);

System.out.println();}

public double balanceInDollars() {

double balanceDollars;

balanceDollars = balance / 3.75;

return balanceDollars;}}

public class AccountTest {

public static void main(String[] args)

{Account acc1 = new Account();

acc1.readInput();

acc1.display();

Account acc2 = new Account();

acc2.readInput();

acc2.display();}}

The Keyword this

• Referring to instance variables:

• outside the class – must use:

• Name of an object of the class

• Followed by a dot

• Followed by Name of instance variable

• Inside the class,

• Use name of variable alone

• The object (unnamed) is understood to be there

• It is the receiving object

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 22

The Keyword this

• Inside the class the unnamed object can be

referred to with the name this

• Example
this.name = keyboard.nextLine();

• The keyword this stands for the receiving

object

• For simplicity Java allows you to omit it.

• We will see some situations later that require the

use of this

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 23

Local Variables

• Variables declared inside a method are

called local variables

• Can only be used inside the method

• For example:

• All variables declared inside method main are local

to main

• Local variables having the same name and

declared in different methods are

considered different variables

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 24

public class AccountTest {

public static void main(String[] args)

{

Account acc1 = new Account();

acc1.id = "1111";

acc1.name = "Mohammad";

acc1.balance = 3000;

acc1.display();

Account acc2 = new Account();

acc2.id = "2222";

acc2.name ="Saad";

acc2.balance = 1000;

acc2.display();

double balanceDollars;

balanceDollars =

acc1.balanceInDollars();

System.out.println("Balance of " +

acc1.name

+ " in dollars is "+ balanceDollars);

}

}

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 25

public class Account {

public String id;

public String name;

public double balance;

public void display(){

System.out.println("\tAccount

information");

System.out.println("ID: " +

id);

System.out.println("Name: " +

name);

System.out.println("Balance: "

+ balance);

System.out.println();

}

public double balanceInDollars() {

double balanceDollars;

balanceDollars = balance *

3.75;

return balanceDollars;

}

}
Two different variables

Local Variables

Blocks

• Recall compound statements

• Enclosed in braces { }

• When you declare a variable within a compound

statement

• The compound statement is called a block

• The scope of the variable is from its declaration to the

end of the block

• A variable declared outside the block is usable

both outside and inside the block

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 28

Parameters of Primitive Type

public class Account {

public String id;

public String name;

public double balance;

public double credit(double amount){

balance+= amount;

return balance;

}

public double debit(double amount){

if(amount <= balance)

balance-=amount;

else

System.out.println("Amount exceeded

balance");

return balance;

}

// the rest of the previously defined methods

}

• Note that both

credit and debit

methods take

one parameter

which is double

• The formal

parameter is
amount

29

public class AccountTest {

public static void main(String[] args) {

Account acc1 = new Account();

acc1.id = "1111"; acc1.name = "Mohammd";

acc1.balance = 3000;

double newBalance = acc1.credit(1000);

System.out.println("The new balance "

+ "(after calling credit) is " + newBalance);

newBalance = acc1.debit(500);

System.out.println("The new balance "

+ "(after calling debit) is " + newBalance);

}

}

Parameters of Primitive Type

Sample screen output

• Calling the method

double newBalance =
acc1.credit(1000);

• The actual parameter is

the double 1000

The new balance (after calling credit) is 4000.0
The new balance (after calling debit) is 3500.0

30

Syntax: Method

32

public, private, protected,

static, abstract, final

type of the value that the method returns
(using return statement)

The syntax of the formal parameter list is:

Parameters of Primitive Type

• Parameter names are local to the method

• When a method is invoked

• Each parameter is initialized to the value in the

corresponding actual parameter

• A primitive actual parameter is not (and cannot be)

altered by invocation of the method

• We will learn later that this is not the case for actual parameters

of non-primitive types.

• Automatic type conversion is performed

CSC111 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed. 33

byte short int long float double

Passing +1 Parameters of Primitive Type

public class X {

public double n;

public void Y(int i, int j){

System.out.println(i + j);

n++;

}

public void Z(double i) {

System.out.println(n + i);

}

}

public class Test {

public static void main(String[] args)

{

X x = new X();

x.n = 2;

x.Y(5,6);

int t1= 1, t2 = 3;

x.Y(t1,t2);

x.Z(x.n);

}

}

34

11
4
8.0

Sample screen output

The use of the Keyword this

public class X {

public double n;

public void Y(int i, int j){

System.out.println(i + j);

n++;

}

public void Z(double n) {

System.out.println(this.n + n);

}

}

public class Test {

public static void

main(String[] args) {

X x = new X();

x.n = 2;

x.Y(5,6);

int t1= 1, t2 = 3;

x.Y(t1,t2);

x.Z(6);

System.out.println(x.n);

}

}

35

11
4
10.0
4.0

Sample screen output

