AN INTRODUCTION TO

PROBLEM SOLVING
AND PROGRAMMING

WALTER SAVITCH

CLASS AND METHOD
DEFINITIONS

Chb5.1

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Class and Method Definitions: Outline

- Class Files and Separate Compilation
- Instance Variables

- Methods

- The Keyword this

- Local Variables

- Blocks

- Parameters of a Primitive Type

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Class and Method Definitions

- Java program consists of objects
- Objects of class types
- Objects that interact with one another
- Program objects can represent

- Objects in real world
- Abstractions

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

FIGURE 5.1 A Class as a Blueprint

Class Name: Automobile —«—— (Class description

Data:
amount of fuel)
e Aclassis a
Ticense plate —_— blueprint ..

Methods (actions): \ e ~N

accelerate: .
How: Press on gas pedal. ... for objects that we
decelerate: instantiate from it
How: Press on brake pedal.)
First Instantiation: Second Instantiation.
Object name: patsCar Object name: suesCar
amount of fuel: 10 gallons amount of fuel: 14 gallons
speed: 55 miles per hour speed: 0 miles per hour
license plate: "135 XJK" Ticense plate: "SUES CAR"
Third Instantiation: 'y

Object name: ronsCar

amount of fuel: 2 gallons
speed: 75 miles per hour - Objects that are instantiations

license plate: "351 WLF" of the class Automobile

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Class and Method Definitions

- Figure 5.2 A class outline as a UML class
diagram

— fuel: double
— speed: double
— license: String

+ accelerate(double pedalPressure): void
+ decelerate(double pedalPressure): void

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Methods

- Think of a method as defining an action to be
taken (a segment of code)

- To start the action you invoke or call the method

- There are two kinds of Java methods
- Return a single item

- Return nothing — a void method

- The method main is a void method

- Invoked by the system
- Not by the application program

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Methods

- To call a void method
- Write the invocation followed by a semicolon
- Resulting statement performs the action defined by the
method
- To call a method that returns a quantity

- Write the invocation anywhere a value matching the
return type can be used

- The call performs the action and the returned value will
be used in the place of the invocation
- If you call a method that returns a value the same
way you call a void method, the method will be
executed, but the returned value will be lost.

Why use User-defined methods?

Using methods has several advantages:

- While working on one method, you can focus on just

that part of the program/class and construct it, debug
It, and perfect it.

- Different people can work on different methods
simultaneously.

- If a method is needed in more than one place in a

class, or in different programs, you can write it once
and use it many times.

- Using methods greatly enhances the program’s

readability because it reduces the complexity of the
program.

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

public class Dog 3 Instance variables _ _ ™\

ublic |String breed; .

Public ot age. or attributes values for each Dog
P ge; instance created.
Each object will have

public void writeOutput ()

{ System.out.println("Name: " + name) ; Its own copy -/
System.out.println ("Breed: " + breed);
System.out.println("Age in calendar years: " + age);
System.out.println ("Age in human years: " +

getAgeInHumanYears()) ;
System.out.println() ;

} // end writeOutput

2 behaviors
public int getAgeInHumanYears () or methods
{ int humanYears = 0;

if (age <= 2)

humanYears = age * 11; W|II be the same for all\
else Dog instances created,
humanYears = 22 + ((age-2) * 35); |puytact on individual
@stance variables. y

return humanYears;
} // end getAgeInHumanYears

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

public class DogDemo

{

public static void main(String[] args)

{

(VDog balto = new Dog() ; h
balto.name = "Balto";
balto.age = 8;
balto.breed = "Siberian Husky";
- J
balto.writeOutput() ;
\
Dog scooby = new Dog() ;
scooby.name = "Scooby";
scooby.age = 42;
\‘scooby.breed = "Great Dane"; Py
System.out.println(scooby.name + " is a " + scooby.breed + ".");

System.out.print ("He is " + scooby.age + " years old, or ");
int humanYears = scooby.getAgeInHumanYears () ;

System.out.println (humanYears + " in human years.");

CSC111

Dog Example

Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

public class Dog

{

public String name;
public String breed;
public int age;

public void writeOutput ()

{ System.out.println("Name: " + name);
System.out.println ("Breed: "+breed);
System.out.println("Age..: "+ age);
System.out.println(

"Age in human years: " +

getAgeInHumanYears()) ;
System.out.println() ;
} // end writeOutput

public int getAgeInHumanYears ()
{ int humanYears = O;
if (age <= 2)
humanYears = age * 11;
else
humanYears = 22 + ((age-2) * 5)
return humanYears;
} // end getAgeInHumanYears

public class DogDemo {
public static void main(String[] args)

{
Dog balto = new Dog() ;

balto.name = "Balto";
balto.age = 8;

balto.breed = "Siberian Husky
balto.writeOutput() ;

Dog scooby = new Dog() ;

scooby.name = "Scooby";
scooby.age = 42;
scooby.breed = "Great Dane";

System.out.println (scooby.name +
" is a "+ scooby.breed +".");
System.out.print("He is " +
scooby.age + " years old, or ");
int humanYears =
scooby.getAgeInHumanYears () ;
System.out.println (humanYears +
" in human years.");
} // end main

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Using a Class and Its Methods

- View sample program, listing 5.2
class DogDemo

Name: Balto

Breed: Siberian Husky
Age in calendar years: 8
Age in human years: 52

Scooby 1s a Great Dane.
He is 42 vyears old, or 222 in human vyears.

../CodeSamples2.htm#Listing 5.2

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Defining Methods

- Consider method writeOutput from

class dOg public void writeOutput()
{

System.out.println("Name: " + name);
System.out.printin("Breed: " + breed);
System.out.printin("Age in calendar years: " +
age);
System.out.printlin("Age in human years: " +

getAgeInHumanYears());
System.out.println();

}
- Method definitions appear inside class definitions

- Methods can only be used with objects of that
class

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Defining Methods

- Most method definitions we will see as public

- A method that does not return a value is specified
as a void method

- A method that does return a values must specify
the type of the returned value.

- Heading includes possible parameters

- Body enclosed in braces { }

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Methods That Return a Value

- Consider method getAgeInHumanYears ()

public|int| getAgeInHumanYears ()
[1int humanYears = 0;
if (age <= 2)
humanYears = age * 11;

else

humanYears = 22 + ((age-2) * 5);

[return humanYears;]
} // end getAgeInHumanYears

- Heading declares type of value to be returned
- Last statement executed Is return

The return statement

» Make sure of the following in the value-returning methods:
o A value is returned.

o Only a single value is returned to the caller method

o The returned value has the same data type as the method

> Remember that the return statement:

o is the last to execute in the method
o make sure all paths are considered

Covering all paths

- Assume you want a method hasLetter for the class Dog, that checks
if a given letter is contained in the name of the dog and returns its
Index, otherwise it prints an error message: N\

What is wrong with
public int hasLetter (char lettexr)* this method?

J
Y~—
;

The return is only in one

int x = name.indexOf (le

if (x '= -1) path of all possible paths
of execution.
return x; _)
else
System.out.print (“"Doesn’t contain thi ter”) ;
System.out.println() ; How can we fix that?]

return -99;

I'd
} There are multiple possibilities, and easy
one is to add a return at the end

return IS last to execute

- Assume you want a method hasLetter for the class Dog, that checks
if a given letter is contained in the name of the dog and returns its
Index, otherwise it prints an error message:

public int hasLetter (char letter) {

What is wrong with
this method now?

int x = name.indexOf (letter) ;

if (x '= -1)
return x;
else

System.out.print (> sn’t contain this letter”);

return -99; ﬁbucwwNOThawaﬂamnmnB

System.out.println () ;—— AFTER the return.
—\
}

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

return In void Methods

- YOU can use return In void methods
- The syntax is simply:
return;

- No value is returned, but the control of the
program is transferred back to the caller method.

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Second Example — Account Class

public class Account ({

public String id, name;

public double balance;

public void readInput () {
Scanner keyboard = new Scanner (System.in) ;
System.out.println ("Enter the account number: ") ;
id = keyboard.nextLine() ;
System.out.println ("Enter the account holder name: ");
name = keyboard.nextLine() ;
System.out.println("Enter the account balance in riyals: ");
balance = keyboard.nextDouble () ;}

public void display () {
System.out.println("\tAccount information") ;

System.out.println("ID: " + id);
System.out.println("Name: " + name) ;
System.out.println("Balance: " + balance) ;

System.out.println() ;}

public double balanceInDollars() {
double balanceDollars;
balanceDollars = balance / 3.75;
return balanceDollars;}}

public class AccountTest ({

public static void main (String[]
{Account accl = new Account();
accl.readInput() ;

accl.display() ;

Account acc2 = new Account();
acc2.readInput() ;
acc2.display();}}

args)

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

The Keyword this

- Referring to instance variables:

- outside the class — must use:
- Name of an object of the class
- Followed by a dot
- Followed by Name of instance variable

- Inside the class,
- Use name of variable alone

- The object (unnamed) is understood to be there
- It is the receiving object

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

The Keyword this

- Inside the class the unnamed object can be
referred to with the name this

- Example
this.name = keyboard.nextLine() ;

- The keyword this stands for the receiving
object
- For simplicity Java allows you to omit It.

- We will see some situations later that require the
use of this

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Local Variables

- Variables declared inside a method are
called local variables
- Can only be used inside the method
- For example:
- All variables declared inside method main are local
tomain

- Local variables having the same name and
declared in different methods are
considered different variables

CSC111

Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Local Variables

public class Account {
public String id;
public String name;
public double balance;

public void display() {
System.out.println("\tAccount
information") ;
System.out.println("ID: " +
id) ;
System.out.println("Name: " +
name) ;
System.out.println("Balance: "
+ balance) ;
System.out.println() ;

}

public double balanceInDollars() ({
double balanceDollars;
balanceDollars~= balance *
3.75;
return balanceDollars;

public class AccountTest ({
public static void main(String[] args)

{

Account accl = new Account();
acecl.id = "1111";

accl.name = "Mohammad";
accl.balance = 3000;
accl.display () ;

Account acc2 = new Account();
acc2.id = "2222";

acc2.name ="Saad";
acc2.balance = 1000;
acc2.display() ;

double balanceDollars;
balanceDgllars =
accl.balanceInDollars() ;
System.but.println("Balance of " +

dollars is "+ balanceDollars);

Two different variables

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Blocks

- Recall compound statements

- Enclosed in braces { }

- When you declare a variable within a compound
statement
- The compound statement is called a block

- The scope of the variable is from its declaration to the
end of the block

- A variable declared outside the block is usable
both outside and inside the block

Parameters of Primitive Type

public class Account {
public String id;
public String name;
public double balance;

public double credit(double amount) { - Note that bOth
soturn balancar credit and debit

1}>ublic double debit (double amount) { methods take
Sl S i one parameter
T ystem.out.printin(anount excescea WHICH is double
e s The formal

} parameter IS

// the rest of the previously defined methods

} amount

Parameters of Primitive Type

public class AccountTest ({
public static void main (String[] args) {

Account accl = new Account(); . Ca||ing the method
accl.id = "1111"; accl.name = "Mohammd";

accl.balance = 3000; double newBalance =
double newBalance = accl.credit(1000); accl.credit(1000);
System.out.println ("The new balance " .
+ " (after calling credit) is " + newBalance) ; - The actual parameter IS
newBalance = accl.debit (500) ; the double 1000
System.out.println ("The new balance "

+ " (after calling debit) is " + newBalance) ;

The new balance (after calling credit) is 4000.0
The new balance (after calling debit) is 3500.0

Syntax: Method

modifier(s) returnType methodName (formal parameter list)

statements
public, privatle, protected, The syntax of the formal parameter list is:
static, abstract, final
. tarpe et e AR OHELE

type of the value that the method returns
(using return statement)

CSsCi11 Adapted from: "JAVA: An Introduction to Problem Solving & Programming", 8th Ed.

Parameters of Primitive Type

- Parameter names are local to the method

- When a method iIs invoked

- Each parameter is initialized to the value in the
corresponding actual parameter

- A primitive actual parameter is not (and cannot be)
altered by invocation of the method

- We will learn later that this is not the case for actual parameters
of non-primitive types.

- Automatic type conversion is performed

byte short int long float double

Passing +1 Parameters of Primitive Type

public class X {

public double n;
public void Y (int i, int j){
System.out.println(i + j);
n++;
}
public void Z (double i) {
System.out.println(n + 1i);

}

public class Test {
public static void main(String[] args)
{
X x = new X();
XxX.n = 2;
x.Y(5,6);
int tl1=1, t2 = 3;
x.Y(tl,t2);
X.2(x.n);

The use of the Keyword this

public class X { public class Test {
public static void
public double n; main (String[] args) {
public void Y (int i, int j){
System.out.println(i + j); X x = new X();
n++; Xx.n = 2;
} x.Y(5,6);
public void Z (double n) { int tl=1, t2 = 3;
System.out.println(this.n + n); x.Y(t1l,t2);
} x.2(6);
} System.out.println(x.n) ;
}
 samplesceenouput |
11
4
10.0
4.0

