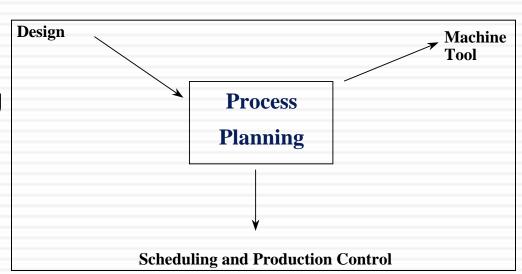
Manufacturing Processes (2), IE-352 Ahmed M El-Sherbeeny, PhD Spring 2017

2


- 1. Introduction
- 2. Manual Process Planning
- 3. Process Plan
- 4. Part Features Identification and Processes Selection
- 5. Processes Sequencing

Introduction

Process Planning

- Known as:
 - manufacturing planning
 - material processing
 - process engineering
 - machine routing
- Definition:
 - act of preparing detailed work instructions to produce a part
 - it's a function within the manufacturing facility (see figure)
 - establishes processes and parameters used to convert part from initial form to final form
 - predetermined in an engineering drawing
 - person who develops process plan: often called process planner

Introduction

- Functions included in process planning:
 - Raw material preparation
 - Processes selection
 - Process sequencing
 - Machining parameter selection
 - Tool path planning
 - Machine selection
 - Fixture selection

Introduction

- Factors Affecting Process Plan Selection:
 - Shape
 - Tolerance
 - Surface finish
 - Size
 - Material type
 - Quantity
 - Value of the product
 - Urgency
 - Manufacturing system itself
- Two approaches to carry out task of process planning:
 - Manual Process Planning
 - Computer Aided Process Planning (CAPP)

- Process planner must have following knowledge:
 - Ability to interpret an engineering drawing
 - Familiarity with manufacturing processes and practice
 - Familiarity with tooling and fixtures
 - Know what resources are available in the shop
 - Know how to use reference books (e.g. machinability data handbooks)
 - Ability to do computations on machining time and cost
 - Familiarity with raw materials

- Some necessary steps to prepare a process plan
 - Study overall shape of part ⇒ identify features, all critical dimensions
 - Thoroughly study the drawing; try to identify all manufacturing features and notes
 - Determine best raw material shape to use if raw stock not given
 - Identify datum surfaces; Use information on datum surfaces to determine the setups
 - Select machines for each setup.
 - 6. Determine rough sequence of operations necessary to create all the features for each setup

- Cont. Some necessary steps to prepare a process plan
 - 7. Sequence the operations determined in the previous step.
 - Check whether there is any interference or dependency between operations
 - Use this information to modify the sequence of operations.
 - 8. Select tools for each operation.
 - Try to use the same tool for several operations if possible.
 - Keep in mind the trade-off on tool-change time and estimated machining time.
 - 9. Select or design fixtures for each setup.
 - 10. Evaluate the plan generated and make necessary modifications.
 - 11. Select cutting parameters for each operation.

Process Plan

- Process Plan AKA (among others):
 - operation sheet
 - route sheet
 - operation planning summary
- Detailed plan contains:
 - route
 - processes
 - process parameters
 - machine and tool selections
 - fixtures

Process Plan

- The level of details in the plan depends on the application:
 - Operation: a process
 - Operation Plan (Op-plan): description of an operation
 - includes tools, machines to be used, process parameters, machining time, etc.
 - Op-plan sequence: Summary of a process plan

Process Plan: Examples of Process Plans

11

by: T.C. Chang Route Sheet Part No. S1243 Part Name: Mounting Bracket workstation Time(min)

1. Mtl Rm

2. Mill02

3. Drl01

4. Insp

Rough plan

Detailed plan

PROCESS PLAN

ACE Inc.

Part No. S0125-F

Part Name: Housing

Original: S.D. Smart Date: 1/1/89 Checked: C.S. Good Date: 2/1/89 Changes:

Material: steel 4340Si

Date:

Approved: T.C. Chang Date: 2/14/89

No.	Operation Description	Workstation	Setup	Tool	Time (Min)
10	Mill bottom surface1	MILL01	see attach#1 for illustration	Face mill 6 teeth/4" dia	3 setup 5 machining
20	Mill top surface	MILL01	see attach#1	Face mill 6 teeth/4" dia	2 setup 6 machining
30	Drill 4 holes	DRL02	set on surface1	twist drill 1/2" dia 2" long	2 setup 3 machining

- A wide variety of manufacturing processes are used to produce a workpiece
- These processes can be classified as:
 - Casting processes
 - Forming and shaping processes
 - Machining processes
 - Joining processes
 - Finishing processes

- Machining processes
 - Drilling
 - drilling, countering, countersinking, deep-hole drilling, etc.
 - Boring
 - Tapping
 - Milling
 - face milling, end milling
 - Turning
 - facing, straight turning, taper turning, parting, etc.
 - Threading

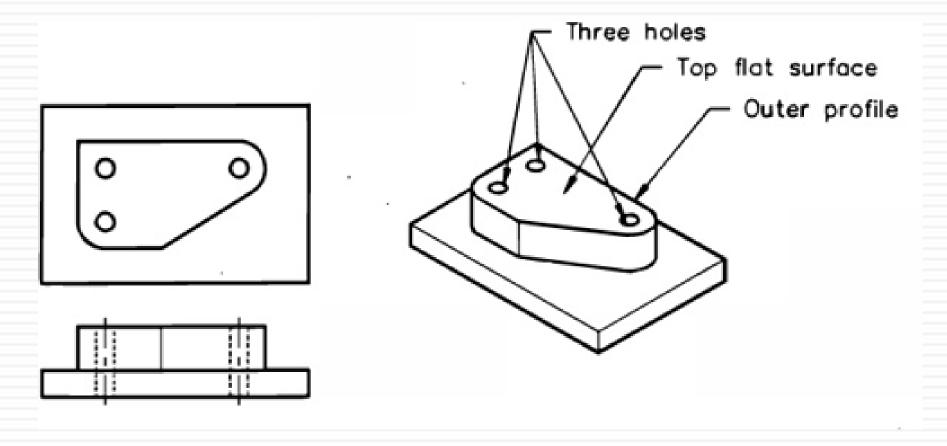
- Features that must be considered in selecting machining processes include:
 - part features
 - required dimensional and geometric accuracy and tolerance
 - required surface finish
 - available resources, including NC machines and cutting tools
 - cost

Part features:

- distinctive geometric form or shape to be produced from raw material
- it determines process type, tool types (shapes and size), machine requirements (3-, 4-, or 5-axis), and tool path
- Two types of part features

Basic features

- simple forms/shapes that require only one machining operation
- include holes, slots, pockets, shoulders, profiles, and angles


Compound features

- consist of two or more basic part features
- e.g. the combined result of two holes with different diameters

Example: Machining Processes Selection

- Select the machining processes for the part shown in the figure given in the next slide.
- Assume required dimensional accuracy and surface roughness are within process capability of drilling and milling operations.
- The four sides of the raw material have been premachined to required dimensions.

Example: Machining Processes Selection (cont.)

Example: Machining Processes Selection (cont.) Solution:

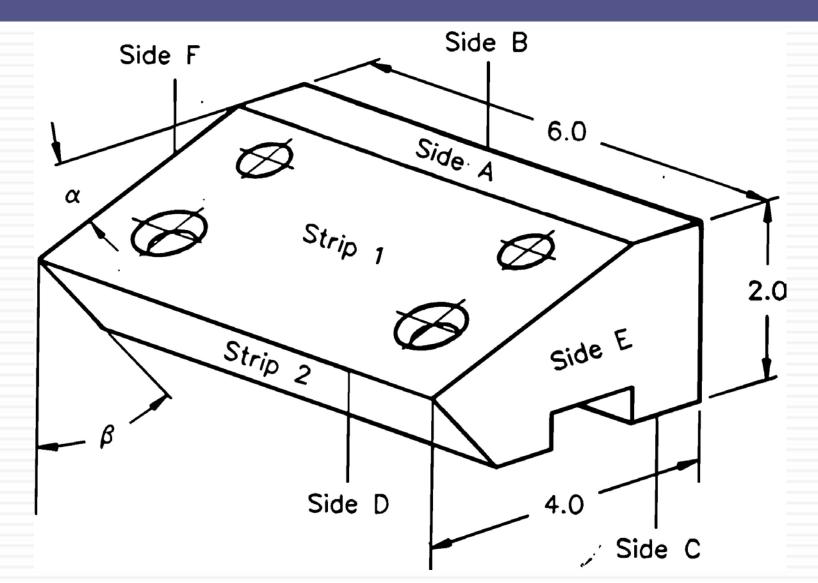
- Top flat surface
- Outer profile
- Three holes
- Recommended machining processes for features are
 - Face-milling: the top surface
 - Rough-milling: the outer profile
 - □ Finish-milling: the outer profile
 - Center-drilling: the three holes
 - Drilling: the three holes

Processes Sequencing

Sequence of operations determined by three considerations:

- Datum surfaces should be machined first if multiple workholding setups required
 - If possible, datum surfaces should be pre-machined in manually operated machine to facilitate workpiece locating and clamping
 - In cases where ≥ 2 holding setups are required:
 - rough datum surfaces are preprocessed in a manually operated machine
 - then used as setup references to produce finished datum surfaces for the final work-holding
 - this ensures the accuracy of the finished part

Processes Sequencing


Sequence of operations determined by 3 considerations (cont.)

- 2. Surfaces with larger area have precedence
 - Larger surfaces tend to be more adaptable to disturbances resulting from machining operations
- 3. Feature interference should be avoided.
 - Feature interference occurs when machining of one feature destroys a requirement for the production of other features
 - This happens when there is interaction or dependency between machining operations

Processes Sequencing: Example

- The figure shown in the next slide is a workpiece in which some features are interrelated.
- The workpiece has five basic features
 - a through slot in side C
 - two angle strips (strip 1, strip 2)
 - two through holes on strip 1 that are perpendicular to side A
 - compound features are two tapped holes perpendicular to strip 1
- Develop the process sequence for producing the part.

Processes Sequencing: Example (cont.)

Processes Sequencing: Example (cont.)

Solution:

- □The raw material is cut from a block stock with dimensions: 6.25 x 4.25 x 2.25 in
- □Studying the part features reveals:
 - $lue{}$ 2 through holes on strip 1 interact with the formation of angle α
 - slot in side C interacts with the cutting of angle β
- \square Machining angle strip 1 first \Rightarrow difficulty in drilling 2 holes
 - □ ⇒ 2 holes must be produced before angle strip 1
- □Likewise, making angle strip 2 first ⇒ difficulty in setting up workpiece to produce the through slot
 - □ ⇒ the slot has to be machined before angle strip 2 is made

Processes Sequencing: Example (cont.)

Recommended processes sequence is:

- Setup A for machining side B
- Setup B for:
 - machining sides A and E
 - also drilling two holes on Side A
- Setup C for:
 - machining sides C and F
 - also cutting the slot in side C
- □ Setup *D* for:
 - cutting angle strip 1
 - drilling two tap holes and tapping the two holes.
- Setup E for cutting angle strip 2

25